Е. И. Краус

Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН ул. Институтская, 4/1, Новосибирск, 630090, Россия

Новосибирский государственный университет ул. Пирогова, 2, Новосибирск, 630090, Россия E-mail: kraus@itam.nsc.ru

МАЛОПАРАМЕТРИЧЕСКОЕ УРАВНЕНИЕ СОСТОЯНИЯ ТВЕРДОГО ВЕЩЕСТВА ПРИ ВЫСОКИХ ПЛОТНОСТЯХ ЭНЕРГИИ ^{*}

Предлагается простая калорическая модель уравнения состояния для описания термодинамических свойств твердых материалов без учета фазовых переходов с минимальным числом параметров в качестве начальных данных. Тепловые колебания кристаллической решетки описываются приближением Дебая. Значения параметров на нулевой изотерме вычисляются аналитически из обобщенной формы функции Грюнайзена. В широком диапазоне плотностей и давлений выполнены расчеты термодинамических характеристик. Для рассмотренных материалов проведено исчерпывающее сравнение результатов теоретических расчетов с имеющимися при высоких плотностях энергии экспериментальными данными.

Введение

Термодинамические функции, реалистически описывающие характеристики веществ на различных участках фазовой диаграммы, являются фундаментальными характеристиками среды. Потребность в подобных функциях всегда была актуальной и постоянно нарастает. Современные широкодиапазонные уравнения состояния, построенные для описания поведения металлов в широком диапазоне параметров сжатия, содержат десятки свободных параметров и экспериментально найденных констант [1; 2]. Последние определяются по данным ударно-волновых экспериментов, измерениям изэнтроп разгрузки пористых образцов и другой экспериментальной термодинамической информации в широкой области фазовой диаграммы. При таком подходе для решения реальных задач исследователь становится заложникам огромного числа необходимого экспериментального материала. Именно поэтому встал вопрос о малопараметрическом уравнении состояния.

Трехчленное уравнение состояния

Результаты экспериментов с ударными волнами дают достаточно материала для построения полуэмпирических уравнений состояния, описывающих поведение конденсированных тел при больших давлениях и температурах. Свойства вещества в этих условиях определяются силами взаимодействия при абсолютном нуле температуры, тепловыми колебаниями атомов или ионов и тепловым возбуждением электронов.

Отыскание по результатам динамических опытов кривых холодного сжатия и получение уравнения состояния сжатого вещества требуют разделения ударного давления на тепловые и холодные составляющие [3; 4]:

$$P = P_{X}(V) + P_{T}(V,T), E = E_{X}(V) + E_{T}(V,T).$$
(1)

Упругие составляющие $P_X(V)$, $E_X(V)$ связаны исключительно с силами взаимодействия, действующими между атомами тела, и равны полным давлению и удельной внут-

ISSN 1818-7994. Вестник НГУ. Серия: Физика. 2007. Том 2, выпуск 2 © Е. И. Краус, 2007

^{*} Работа выполнена при финансовой поддержке Министерства образования и науки РФ (проект РНП.2.2.2.3.10030). Автор выражает благодарность и искреннюю признательность за критические замечания и обсуждение академику В. М. Фомину и кандидату физико-математических наук И. И. Шабалину.

ренней энергии при абсолютном нуле температуры, почему их иногда называют «холодным» давлением или энергией. Тепловые составляющие давления $P_T(V,T)$ и энергии $E_T(V,T)$ связаны с нагреванием тела, т. е. с температурой.

Равновесное состояние твердого тела при абсолютном нуле температуры и нулевом давлении характеризуется взаимной компенсацией между атомными силами притяжения и отталкивания, а также минимумом потенциальной упругой энергии, который можно принять за начало ее отсчета $E_X = 0$. При абсолютном нуле температуры атомы совершают так называемые нулевые колебания, с которыми связана энергия $h\omega/2$, приходящаяся на одно нормальное колебание частоты ω . Эту энергию можно включить в потенциальную энергию $E_X(V)$ [4].

Упругое давление связано с потенциальной энергией соотношением

$$P_X = -\frac{dE_X}{dV}.$$
 (2)

Соотношение (2) имеет естественный механический смысл – приращение энергии равно работе сжатия, и может рассматриваться как уравнение изотермы или адиабаты холодного сжатия. С другой стороны, формула (2) следует из общего термодинамического соотношения TdS = dE + PdV, если учесть, что температура T равна нулю. Но при T = 0 энтропия S по теореме Нернста также равна нулю. Поэтому изотерма T = 0является одновременно и изэнтропой S = 0.

Холодные составляющие не зависят от температуры и характеризуют только упругое взаимодействие атомов материала. Тепловые составляющие – реакция материала на нагревание. Если температура не слишком велика, то атомы твердого тела в основном совершают колебания вокруг своих положений равновесия. Перемещение атомов в пространстве путем перескока в межузлие или другие вакантные узлы требует преодоления барьеров. потенциальных При сжатии, вследствие возрастания сил отталкивания, высоты потенциальных барьеров также резко возрастают. Свободные перемещения частиц при этом еще больше затрудняются, и их движение остается ограниченным пространством своих ячеек. В этих условиях оно сохраняет свойство гармонических колебаний в широком температурном интервале, включающем и состояния, возникающие при ударном сжатии «сплошных» образцов.

Выражения для тепловой энергии $E_{t,l}$ и теплого давления $P_{t,l}$ «классического» ансамбля осцилляторов (атомов решетки) имеют вид

$$E_{t,l} = c_{v,l}T$$
, $P_{t,l} = \gamma_l \quad c_{v,l}\frac{T}{V}$, (3)

где γ_l — коэффициент Грюнайзена, выражающий отношение теплового давления к плотности тепловой энергии, $c_{v,l} = 3R/A$ теплоемкость решетки при постоянном объеме (закон Дюлонга–Пти), A — средний атомный вес, R — газовая постоянная.

Дальнейшее повышение температуры до нескольких тысяч градусов приводит к тепловому возбуждению электронов, в первую очередь у металлов. В отличие от диэлектриков, у металлов свободные уровни непосредственно примыкают к поверхности Ферми, ограничивающей в пространстве импульсов заполнение электронами энергетических состояний. Вследствие этого для высоких температур уравнения состояния металлов, порешеточных компонент, должны мимо включать члены, описывающие тепловые давление и энергию электронного газа.

При нагревании металла до температуры *T* количество возбужденных электронов пропорционально числу заполненных уровней vkT (v – плотность уровней, k – постоянная Больцмана) на энергетическом интервале kT. Поскольку средняя энергия, приобретенная каждым электроном, пропорциональна kT, то общая энергия возбужденных электронов – vT^2 , т. е. в общепринятой форме [1; 5]

$$E_{t,e} = \frac{c_{v,e}T^2}{2} , \qquad (4)$$

и на основании термодинамического равен-

ства
$$P = T \int_{0}^{T} T^{-2} (\partial E / \partial V) dT$$
 получим
 $P_{t,e} = \frac{\gamma_e c_{v,e} T^2}{2V},$
(5)

где γ_e – электронный аналог коэффициента Грюнайзена, выражающий отношение теплового давления электронов к плотности их тепловой энергии, $c_{v,e} = c_{v,e0} \left(V/V_0 \right)^{\gamma_e}$ – электронная теплоемкость, $c_{v,e0}$ – экспериментальное значение электронной теплоемкости при нормальных условиях.

Для описания тепловых свойств электронного газа Кормером [6] был проведен детальный анализ температурного поведения электронов на основе квантово-статистических расчетов Гильвари [7] и Латтера [8]. Этот анализ показал, что до температур порядка 30000÷50000К теплоемкость электронов пропорциональна температуре $c_{v,e} \sim T$, а энергия $E_{t,e} \sim T^{-2}$. Что касается теплового давления, то с большой точностью статистические значения электронного аналога коэффициента Грюнайзена уе в экспериментально достижимом диапазоне сжатий постоянны и равны 1/2 (для простых металлов), для переходных металлов высокотемпературные у_е примерно в два-три раза больше. электронного Для свободного газа $\gamma_e = 2/3$ [3; 4]. В наших уравнениях также используется значение $\gamma_e = 2/3$.

Учитывая выражения (3–5), уравнения Ми–Грюнайзена (1) приводятся к виду

$$E(V,T) = E_{x}(V) + c_{v,l}T + \frac{1}{2}c_{v,e0}T^{2}\left(\frac{V}{V_{0}}\right)^{2/3},$$

$$P(V,T) = -\left(\frac{dE_{x}}{dV}\right) + \gamma_{l}\frac{c_{v,l}T}{V} + \frac{1}{3}\frac{c_{v,e0}T^{2}}{V}\left(\frac{V}{V_{0}}\right)^{2/3},$$
(6)

или в терминах свободной энергии

$$F(V,T) = E_{x}(V) + c_{v,l}T \ln\left(\frac{\theta(V)}{T}\right) - \frac{1}{2}c_{v,e0}T^{2}\left(\frac{V}{V_{0}}\right)^{2/3},$$
(7)

где $\theta(V)$ – температуры Дебая.

Для полного соответствия уравнению Ми–Грюнайзена (1) необходимо, чтобы коэффициент Грюнайзена был не только функцией объема $\gamma(V)$, но и температуры $\Gamma(V,T)$:

$$\Gamma(V,T) = \frac{c_{v,l}\gamma_l + \frac{1}{3}c_{v,e0}\left(\frac{V}{V_0}\right)^{2/3}T}{c_{v,l} + \frac{1}{2}c_{v,e0}\left(\frac{V}{V_0}\right)^{2/3}T}.$$
(8)

Как видно, уравнение (8) удовлетворяет уравнению (1), и коэффициент Грюнайзена зависит как от объема, так и от температуры.

Построение функции Грюнайзена

Построим модельное уравнение состояния для термодинамических функций твердой фазы, основанное на зависимости коэффициента Грюнайзена $\Gamma(V,T)$ от объема и температуры, полученной А. М. Молодцом в работах [9; 10]. Выражение для изотермического потенциала имеет вид явной аналитической функции от объема. Рассмотрим вывод этого потенциала.

Полагаем, что к рассматриваемому материалу применимо уравнение состояния Ми– Грюнайзена (1) в форме, связывающей давление *P*, удельную внутреннюю энергию *E* и удельный объем *V* по формуле

$$P - P_x = \frac{\gamma(E - E_x)}{V}.$$
 (9)

Считаем, что для материала с начальной температурой T_0 изменение объема V_0 при изменении температуры до T_1 ($T_1 > T_0$) определяется как

$$V_1 = V_0 \left[1 + \beta (T_1 - T_0) \right], \tag{10}$$

где β – коэффициент объемного расширения.

Предположим, что ударная адиабата задана линейным соотношением между скоростью ударной волны D и массовой скоростью U:

$$D = c_0 + \lambda U, \tag{11}$$

где c_0 и λ – константы материала.

Рассмотрим связь между двумя ударными адиабатами материала при различных начальных температурах. Пусть для начальных величин удельного объема V_0 и температуры T_0 известна ударная адиабата P_1^H , тогда ударная адиабата этого же материала с начальным удельным объемом V_1 и начальной температурой T_1 будет связана с адиабатой P_1^H следующей зависимостью [11]:

$$P_{2}^{H} = \frac{P_{1}^{H} (1 - 0, 5\eta_{1}V_{0}\gamma/V) + (E_{2}^{0} - E_{1}^{0})\gamma/V}{1 - 0, 5\eta_{2}V_{1}\gamma/V},$$
(12)

где $\eta_1 = 1 - V/V_0$, $\eta_2 = 1 - V/V_1$, E_1^0 и $E_2^0 -$ значения внутренней энергии материала при начальных условиях (V_0, T_0) и (V_1, T_1) соответственно.

Эта закономерность (12) при ударноволновом сжатии монолитного материала при различных начальных температурах и условие Ренкина–Гюгонио

$$E_1^H = E_1^0 + \frac{1}{2}P_1^H(V_0 - V)$$
(13)

позволили А. М. Молодцу получить единую аналитическую формулу для коэффициента Грюнайзена, безотносительную к свойствам конкретного материала [9; 10]:

$$\gamma(V) = \frac{2}{3} - \frac{2}{(1 - aV_0/V)},$$
(14)

$$a = 1 + \frac{2}{(\gamma_s - 2/3)} + \frac{2P_{t,0}}{K_s},$$
 (15)

где $\gamma_s = \beta K_s V_0/c_v$, K_s – адиабатический модуль объемного сжатия, c_v – теплоемкость при постоянном объеме (в случае учета членов, отвечающих за электронное возбуждение в уравнении (7), теплоемкость при постоянном объеме $c_v = c_{v,l} + c_{v,e}$ складывается из решеточной и электронной теплоемкостей), $P_{t,0}$ – тепловая часть давления при нормальных условиях.

Необходимо заметить, что процедура вывода формулы (14) в [9; 10] «привязана» к начальному состоянию (V_0,T_0), такому, при котором $P(V_0,T_0) = 0$. В этом термодинамическом состоянии вычисляются все теплофизические характеристики β (V_0,T_0), $K_S(V_0,T_0)$, $c_v(V_0,T_0)$, $P_{t,0}(V_0,T_0)$ материала, которые и определяют параметр *a* в (15). При этом необходимо особо отметить, что вывод не ограничен предположениями о каком-либо типе конденсированной среды, а сама формула содержит лишь общие фундаментальные свойства материала.

Используя определение коэффициента Грюнайзена в приближении Дебая

$$\gamma = -\left(\frac{d\ln\theta}{d\ln V}\right)\Big|_{T}$$
 и соотношение (14), най-

дем зависимость характеристической температуры Дебая от объема

$$\theta(V) = \theta_0 \left[\frac{(a - V/V_0)}{(a - 1)} \right]^2 \left(\frac{V_0}{V} \right)^{\frac{2}{3}},$$
 (16)

где $\theta_0 = \theta(V_0)$ – значение температуры Дебая при нормальных условиях.

Определим зависимости коэффициента Грюнайзена от объема $\gamma(V)$. Согласно Слэтеру [12] и Ландау [13], все частоты изменяются пропорционально скорости звука $C_x = V(-dP_x/dV)^{1/2}$ и обратно пропорционально межатомному расстоянию $r \sim V^{-1/3}$. В этих предположениях средняя частота для «классического» ансамбля осцилляторов

$$\omega_s \sim V^{\frac{2}{3}} \left(-\frac{d P_x}{d V} \right)^{\frac{1}{2}}.$$
 (17)

По модели Дугдейла и Макдональда средняя частота, согласно [14], вычисляется следующим образом:

$$\omega_{dm} \sim V^{\frac{1}{3}} \left[-\frac{d}{dV} \left(P_x V^{\frac{2}{3}} \right) \right]^{\frac{1}{2}}.$$
(18)

Модель Зубарева и Ващенко [15] для частиц, колеблющихся в сферически симметричном поле своих соседей, дает среднюю частоту

$$\omega_{zv} \sim \left[-\frac{d}{dV} \left(P_x V^{\frac{2}{3}} \right) \right]^{\frac{1}{2}}.$$
 (19)

Сравнение расчетных зависимостей $\gamma(V)$, полученных разными способами (17–19), с экспериментальными данными показывает, что ни одна из квазигармонических моделей не дает адекватного описания динамического сжатия [2]. Поэтому для получения наиболее общих выражений для потенциальной энергии на нулевой изотерме все различные предположения могут быть объединены в формуле для средней частоты

$$\omega \sim V^{\frac{2-t}{3}} \left[-\frac{d}{dV} \left(P_x V^{\frac{2t}{3}} \right) \right]^{\frac{1}{2}}.$$
 (20)

Ее логарифмическая производная по объему и определяет обобщенный коэффициент Грюнайзена

$$\gamma_{p}(V) = -\left(\frac{2-t}{3}\right) - \frac{V}{2} \left[\frac{\frac{d^{2}}{dV^{2}}\left(P_{x}V^{\frac{2t}{3}}\right)}{\frac{d}{dV}\left(P_{x}V^{\frac{2t}{3}}\right)}\right].$$
 (21)

Тогда в уравнении (21) значение при t = 0отвечает теории Ландау-Слэтера, t = 1 -Дуглейла–Макдональда, t = 2 соответствует теории свободного объема. Следует отметить, что величина и знак параметра t определяяются характером зависимости коэффициента Пуассона. Нулевое значение параметра t соответствует постоянству коэффициента Пуассона, т. е. формуле Слэтера (17), положительное значение t соответствует увеличению коэффициента Пуассона с давлением, т. е. формулам Дуглейла-Макдональда (18) и Зубарева-Ващенко (19), и, наконец, отрицательное значение t соответствует отрицательной производной коэффициента Пуассона.

В случае нормальных условий при $V = V_0$, имеем следующую связь на значение коэффициента Грюнайзена:

$$\gamma(t=0) = \gamma(t=1) + \frac{1}{3} = \gamma(t=2) + \frac{2}{3}.$$

Сопоставление различных способов расчета $\gamma(V)$ с экспериментальными данными для алюминия в [2] показало, что ни одна из квазигармонических моделей (17-19) не обеспечивает решающего преимущества при описании динамического эксперимента, поэтому в общем случае использование (21) является наиболее верным. Дополнительно отметим, что применение для расчета $\gamma(V)$ формулы (21) допустимо, строго говоря, только для изотропных или имеющих кубическую симметрию структур, в общем же случае необходимо учитывать тензорный характер коэффициента Грюнайзена. Таким образом, решение в полном объеме задачи о поведении $\gamma(V)$ возможно только с учетом реального спектра частот колебаний в кристалле.

Определение нулевой изотермы

Для определения нулевой изотермы приравняем соотношения для коэффициента Грюнайзена, полученные А. М. Молодцом, при нулевой температуре T = 0 К (14), (15), и выражение для обобщенного коэффициента Грюнайзена (21). Тогда можно получить дифференциальное уравнение на «холодное» давление P_x :

$$\frac{2}{3} - \frac{2}{1 - a_{x}V_{0}/V} = -\left(\frac{2 - t}{3}\right) - \frac{V}{2} \left[\frac{\frac{d^{2}}{dV^{2}}\left(P_{x}V^{\frac{2t}{3}}\right)}{\frac{d}{dV}\left(P_{x}V^{\frac{2t}{3}}\right)}\right],$$
(22)

где a_x – значение параметра $a|_{T=0 \text{ K}}$ при нулевой температуре в (15). В качестве первого приближения согласно (14) можно взять $a_x = a(0) = 1 + 2/(\gamma_s - 2/3).$

Решение дифференциального уравнения (22) позволяет определить «холодное» давление и энергию

$$P_{x}(V) = C_{1}V^{-2t/3} + C_{2}H_{2}(V),$$

$$E_{x}(V) = -\left(\frac{C_{1}V^{-\frac{2t}{3}}}{1 - \frac{2t}{3}} + C_{2}H_{1}(V)\right) + C_{3}, \quad (23)$$

где C_1 , C_2 , C_3 – константы интегрирования, а $H_1(V)$ и $H_2(V)$ – полиномы, которые вычисляются по следующим формулам [16]: $H_1(V) = V^{-5/3} \times$

$$\times \begin{cases} (t+2)(t+1)(t+7/2)(t+1/2) \xi^{4} - \\ 4(t+2)(t+7/2)(t-5/2)(t+1/2) \xi^{3}V + \\ 6(t+2)(t+7/2)(t-5/2)(t+1) \xi^{2}V^{2} - \\ 4(t+1)(t+7/2)(t+1/2)(t-5/2) \xi V^{3} - \\ (t+2)(t+1)(t+7/2)(t+1/2) V^{4} \end{cases} ,$$

$$\begin{split} H_2(V) &= 3V^{-2/3} \times \\ & \times \begin{cases} -1/2(t+2)(t+1)(t+7/2)(t+1/2) & \xi^4 - \\ 4(t+2)(t+7/2)(t-5/2)(t+1/2) & \xi^3 V + \\ 3/2(t+2)(t+1)(t+7/2)(t-5/2) & \xi^2 V^2 - \\ 4/7(t+1)(t+7/2)(t+1/2)(t-5/2) & \xi V^3 - \\ 1/10(t+2)(t+1)(t-5/2)(t+1/2)V^4 \end{cases} \end{split} . \end{split}$$

Здесь сделана замена $\xi = a_x V_0$.

Для нахождения констант в (23), по аналогии с [9], выполним следующие действия.

1) Подставив соотношение (23) в уравнение для давления (6) при нормальных условиях $T = T_0$ и $V = V_0$, получим изотерму нормального состояния

$$P(V_0, T_0) = C_1 V_0^{-2t/3} + C_2 H_2(V_0) + \frac{\gamma_l c_{\nu,l} T_0}{V_0} + \frac{c_{\nu,e0} T_0^2}{3V_0}.$$
(24)

Дифференцируя изотерму (24) по объему V и используя экспериментальное значение модуля объемного изотермического сжатия K_t при нормальных условиях,

$$C_{1} = 3V^{\left(1+\frac{2t}{3}\right)} \times \frac{\left[\left(\frac{\partial H_{2}(V)}{\partial V}\right)\left(P_{0}-P_{t,0}\right)+H_{2}(V)\left(\frac{K_{t}}{V_{0}}+\left(\frac{\partial P_{t,0}}{\partial V}\right)\right]_{T}\right)\right]}{2t H_{2}(V)+3V\left(\frac{\partial H_{2}(V)}{\partial V}\right)}.$$

$$(25)$$

2) Поскольку $P(V_0, T_0) = P_0$, то после подстановки выражения (25) в соотношение (24) получим значение константы C_2 :

$$C_{2} = \frac{\left[2t\left(P_{0} - P_{i,0}\right) + 3V\left(\frac{K_{i}}{V_{0}} + \left(\frac{\partial P_{i,0}}{\partial V}\right)\right|_{T}\right)\right]}{2t H_{2}(V) + 3V\left(\frac{\partial H_{2}(V)}{\partial V}\right)},$$
(26)

где $P_{t,0}$ – тепловое давление при нормальных условиях, соответствующее третьему и четвертому членам в уравнении для давления (24).

3) Для того чтобы определить константу C_3 , предварительно определим корень уравнения $P_x(V_*) = 0$, которое получается из уравнения на давление (23). Далее примем, что при удельном объеме, равном $V_{0,V} = V_0 a_x V^*$, потенциальная энергия имеет нулевое значение (потенциальная яма), тогда из (23) получим

$$C_{3} = \frac{C_{1}V_{*}^{1-2t/3}}{1-\frac{2t}{3}} + C_{2}H_{1}(V_{*}).$$
(27)

Набор полуэмпирических соотношений (7-27) позволяет описать поведение термодинамических свойств твердого тела в широком диапазоне давлений и температур, причем для применения уравнения состояния необходимо и достаточно знание только шести констант V_0 , β , K_t , c_v , Θ_0 , $c_{v,e0}$, соответствующих значениям величин при нормальных условиях, которые могут быть найдены в справочниках по физикомеханическим свойствам веществ. Параметр a_x , который также входит в уравнение состояния, уточняется по экспериментальным данным (например, изотерме или ударной адиабате) при заданной величине параметра t. Оставшиеся величины c_p и K_s , которые также используются в уравнениях для вычислений, определяются через вышеуказанные параметры с помощью известных термодинамических тождеств

$$K_{s} = K_{t} + \frac{TV(K_{t}\beta)^{2}}{c_{v}}, \ c_{p} = c_{v} + TVK_{t}\beta^{2}$$

Для расчета поведения конденсированных сред за фронтом ударных волн к исходным выражениям необходимо добавить соотношение Ренкина–Гюгонио (13), что позволит рассчитать все термодинамические параметры материалов вдоль ударных адиабат.

Область применения термодинамической модели

Одним из важных моментов при разработке термодинамических уравнений состояния является вопрос об области их применимости. Значения параметров V_0 , β , K_t , c_v , Θ_0 , $c_{v,e0}$ модели определяются справочными данными при конкретных начальных условиях, т. е. они характеризуют только ту фазу вещества, в которых вещество существует при заданных начальных условиях (одна фаза вещества).

Еще одно ограничение заключается в том, что соотношение (14) имеет особую точку при величине текущего объема $V = aV_0$. Согласно выражению (17), она соответствует нулевому значению характеристической температуры, поэтому в этой точке испытывают разрыв все термодинамические функции материала. Поскольку данная точка лежит в области растяжений, то для корректного применения модели необходимо в области растяжений использовать иные уравнения состояния с условиями сшивки при нормальных условиях, что составляет предмет отдельного исследования.

Результаты расчетов

На основании построенного уравнения состояния были рассчитаны ударные адиабаты различных материалов [17]. На рис. 1 представлены рассчитанные по авторской методике ударные адиабаты и нулевые изотермы алюминия, меди, свинца.

Рис. 1. Ударные адиабаты и кривые «холодного» сжатия алюминия (Al), меди (Cu) и свинца (Pb)

Для сравнения показаны результаты экспериментов различных исследовательских групп, данные которых объединены в [18], а также результаты расчета «холодного» давления из [19] (эти расчеты являются классическими в области создания уравнения состояния). Как видно, отличия в «холодных» кривых, рассчитанных по [19], и авторских зависимостях незначительны вплоть до степеней сжатия $V_0/V = 1,5$. При степенях сжатия $V_0/V > 1,5$ отличия более существенны (но не превышают 7 %), что связано с методикой построения модели, где опорным состоянием для построения уравнений является нормальное состояние конденсированной среды.

Для верификации предложенной термодинамической модели также были выполнены расчеты характеристик W, Ni, Mo и Ta. На рис. 2 представлены «холодное» давление и ударные адиабаты вольфрама, никеля, молибдена и тантала, построенные по авторской методике. В качестве сравнения на рисунок нанесены экспериментальные значения для полного давления [20; 21] и расчетные значения «холодного» давления из [21].

Все выше описанные расчеты проводились при величине параметра t = 0 в (21), т. е. по теории Ландау–Слэтера. Расчеты же для диоксида урана UO₂ показали, что ни при каких значениях подгоночного параметра a_x и начальных данных, которые и определяют начальный ход ударной адиабаты, невозможно аппроксимировать экспериментальные данные из [22] при значении t = 0. При значениях t > 1 аппроксимация возможна, но величина производной $\partial P/\partial \rho$ в начальной точке для этих экспериментов достаточно мала.

На рис. 3 представлен расчет ударных адиабат, вычисленных при t = 0, по методике Ландау–Слэтера, и при t = 0,6 в (21). Использование коэффициента Грюнайзена в обобщенной форме, позволило достигнуть хорошего соответствия расчета и экспериментальных данных [16].

В качестве примера для того, чтобы оценить величины вкладов различных составляющих в полное давление («холодное», тепловое, электронное), проведен расчет ударной адиабаты для свинца, результаты которого представлены рис. 4. Хорошо видно, что в свинце, до сжатий (V₀/V < 1,8), основную долю полного давления, свыше 60 %, составляет упругое давление P_x(V). Таким образом, общее давление является тепловым, менее чем 40 %, при этом вклад электронов в тепловое давление составляет ~ 5÷8 %. Влияние теплового возбуждения электронов на ударную адиабату начинает проявляться при умеренных сжатиях (V₀/V > 1,4). Для сравнения на рис. 4 также нанесены результаты расчета из работ [19; 23].

Рис. 2. Ударные адиабаты и кривые «холодного» сжатия вольфрама (W), никеля (Ni), молибдена (Mo) и тантала (Ta): *1* – по R. G. McQueen, S. P. Warsh [20]; 2 – по К. К. Крупникову [21]

Рис. 3. Ударная адиабата UO₂

Рис. 4. Зависимость полного давления и его составляющих от степени сжатия в Pb

Рис. 5. Зависимость составляющих внутренней энергии от степени сжатия в Pb

На рис. 5 показана полная удельная энергия свинца за фронтом ударной волны и всех ее составляющих. В отличие от дав-

ления, роль тепловых составляющих удельной энергии более заметна. Общая энергия является тепловой, более чем на 60 %, при этом вклад электронов в тепловую энергию достигает порядка 25 % в представленном диапазоне сжатий. Роль тепловой удельной энергии становится существенной при сжатиях $V_0/V \approx 1,05$, а уже при сжатии $V_0/V \approx 1,65$ вклад тепловой энергии является основным. Влияние теплового возбуждения электронов на ударной адиабате начинает проявляться при $V_0/V \approx 1,4$, при этом при дальнейшем увеличении сжатия ее влияние становится все более заметным. Так, при сильных сжатиях (если проэкстраполировать далее область сжатия) $V_0/V > 2,0$, вклад теплового возбуждения электронов в удельную энергию становится основным.

Эти простые оценки позволяют утверждать, что в расчетах реальных процессов при сверхвысоких нагрузках необходимо учитывать тепловое возбуждения электронных оболочек атомов в уравнении состояния. В то же время при умеренных степенях сжатия ($V_0/V \approx 1,4$) учет теплового возбуждения электронов не является необходимым для достижения приемлемой точности.

На рис. 6 показана зависимость температуры свинца от степени его сжатия с учетом и без учета членов, ответственных за возбуждение электронов в (6). Учет этих членов в уравнении состояния позволяет более точно описать температурную кривую сжатия. Следует, однако, оговорить, что в расчете рис. 6 не учитывали эффект плавления, и расчетная кривая является верной лишь до температуры плавления материала. Эффект плавления за фронтом мощных ударных волн в данной статье не рассматривался.

Таким образом, предложена простая калорическая модель уравнения состояния для решения высокоскоростных динамических задач, обеспечивающая точность, сопоставимую с точностью широкодиапазонных уравнений состояний в исследуемой области сжатий, при этом количество констант, необходимых для решения, сведено к минимуму.

Список литературы

1. Альтиулер Л. В., Бушман А. В., Жерноклетов М. В. и др. Изэнтропы разгрузки и уравнения состояния металлов при высоких плотностях энергии // ЖЭТФ. 1980. Т. 78, № 2. С. 741–760. 2. Бушман А. В., Фортов В. Е. Модели уравнений состояния веществ // УФН. 1983. Т. 140, № 2. С. 177–232.

3. Жарков В. Н., Калинин В. А. Уравнение состояния твердых тел при высоких давлениях и температурах. М.: Наука, 1968. 312 с.

4. Зельдович Я. Б., Райзер Ю. П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука, 1966. 688 с.

5. Кормер С. Б., Урлин В. Д. Об интерполяционных уравнениях состояния металлов для области сверхвысоких давлений // Докл. АН СССР. 1960. Т. 131. С. 542–545.

6. Альтиулер Л. В., Кормер С. Б., Баканова А. А. и др. Уравнения состояния алюминия, меди и свинца для области высоких давлений // ЖЭТФ. 1960. Т. 38, № 3. С. 790–798.

7. *Gilvarry J. J.* Gruneisen's law and fusion curve at high pressure // Phys. Rev. 1955. Vol. 102. No. 2. P. 934–944.

8. *Latter R*. Temperature behaviour of the Tomas – Fermi statistical model for atoms // Phys. Rev. 1955. Vol. 99. No. 6. P. 1854–1870.

9. Молодец А. М., Молодец М. А., Набатов С. С. Изохорно-изотермический потенциал жидкого алмаза // ФГВ. 1999. Т. 35, № 2. С. 81-87.

10. *Молодец А. М.* Обобщенная функция Грюнайзена для конденсированных сред // ФГВ. 1995. Т. 31, № 5. С. 132–133.

11. Мак-Куин Р., Фритц Дж., Марш С. Динамические исследования твердых тел при высоких давлениях. М.: Мир, 1965. С. 195–230.

12. *Slater I. C.* Introduction in the chemical physics. N.-Y.; L.: McGraw Book company, Inc., 1935. 239 p.

13. Ландау Л. Д., Станюкович К. П. Об изучении детонации конденсированных взрывчатых веществ // ДАН СССР. 1945. Т. 46. С. 399–406.

14. *Dugdale J. S., McDonald D.* The thermal expansion of solids // Phys. Rev. 1953. Vol. 89. P. 832–851.

15. Зубарев В. Н., Ващенко В. Я. О коэффициенте Грюнайзена // ФТТ. 1963. Т. 5. С. 886–891.

16. Краус Е. И., Фомин В. М., Шабалин И. И. Модельные уравнения термодинамических функций состояния веществ. 1. Твердое тело // Физ. мезомех. 2004. Т. 7. С. 285–288.

17. Fomin V. M., Kraus E. I., Shabalin I. I. An Equation of State for Condensed Matter behind Intense Shockwaves // Mater. Phys. Mech. 2004. Vol. 7. No. 1. P. 23–28.

18. Жерноклетов М. В., Зубарев В. Н., Трунин Р. Ф. и др. Экспериментальные данные по ударной сжимаемости и адиабатическому расширению конденсированных веществ при высоких плотностях энергии. Черноголовка: ВНИИЭФ. 1996. 388 с.

19. Альтиулер Л. В., Кормер С. Б., Баканова А. А. и др. Уравнения состояния алюминия, меди и свинца для области высоких давлений // ЖЭТФ. 1960. Т. 38, № 3. С. 790–798.

20. *McQueen R. G., Warsh S. P.* Equation of state for nineteen metallic elements from shock–wave, measurements to two megabars // J. of Applied Physics. 1960. Vol. 31. No. 7. P. 1253–1297.

21. Крупников К. К. и др. Исследование ударной сжимаемости титана, молибдена, тантала и железа // Докл. АН СССР. 1963. Т. 148. С. 1302–1305.

22. *LASL* Shock Hugoniot Data / Ed. S. P. Marsh-Berkeley: Univ. California Press, 1979. 672 p.

23. *Альтиулер Л. В.* Применение ударных волн в физике высоких давлений // УФН. 1965. Т. 85. С. 197–258.

Материал поступил в редколлегию 16.04.2007