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Relativistic Equilibrium of Nonneutral Plasmas 

It is shown that relativistic effects strongly modify the equilibrium of nonneutral plasmas even if the linear velocity of 
plasma rotation in crossed electric and magnetic fields is small as compared to the speed of light. The change is especially 
pronounced for the fast rigid-rotor equilibrium, when the frequency of the azimuthal rotation is close to the cyclotron fre-
quency, and the radial density profile becomes approximately parabolic rather than stepwise as predicted by the non-
relativistic theory. It is argued that such effects could be detected in experiments similar to those performed by Theiss 
et al. [Phys. Rev. Lett. 135, 1436 (1975)]. The relativistic modification of the Brillouin density limit is also addressed. 

Introduction

As is well known [1], within a non-
relativistic cold fluid model the equilibrium of 
an infinitely long nonneutral plasma column 
with constant density, confined radially by a 
uniform magnetic field 0B  is characterized by 
the azimuthal rotation frequencies  

1 22 21 1 1 2
2 p (1)

where 2 1 2(4 )p e n m  is the plasma fre-
quency, with n , e  and m  the particle density, 

charge and mass, respectively, and 0eB mc
is the non-relativistic cyclotron frequency (
is assumed to have the same sign of the 
charge). The two angular frequencies  and 

 correspond to a slow and a fast rotation of 
the plasma column, respectively. As  are 
independent of the radial coordinate r , the 
azimuthal motion of the plasma column corre-
sponds to a rigid rotation about the axis of 
symmetry.  

For a low density plasma, 2 22 1p , the 
frequency of slow rotation is approximately 
equal to the electric drift (diocotron) frequency, 
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2 2p , while the frequency of fast rota-
tion approaches the cyclotron frequency, 

2( 2 )p . For 2 22 1p , the two 
rotational equilibria merge, and 

2 . The condition 2 22 1p  is 
usually referred to as the Brillouin density 
limit: radially confined equilibria do not exist 
for 2 2

0 0 (8 )Bn n B mc  [1, 2]. The two rota-
tional equilibria have been measured experi-
mentally [3].  

It is usually assumed that the electric current 
due to the azimuthal rotation of the nonneutral 
plasma column produces a negligible change of 
the axial magnetic field. A simple estimate 
readily shows that for the slow rotation equilib-
rium the relative depression of the magnetic 
field can be neglected,

22 2

2 1
2

pB r
B c

(2)

as long as the plasma radius is much smaller 
than the maximum radius of a rigidly rotating 
body allowed by the theory of relativity, 

| |r c  [4]. The inequality (2) means that 
relativistic effects are unessential for the slow 
rotation mode The diamagnetic correction of 
the magnetic field in cold nonneutral plasma is 
smaller than the relativistic correction (2) by 
the square of the ratio p Dr  of the plasma ra-

dius pr  to the Debye length 2 1 2( 4 )D T e n .
It is shown below, however, that this may be 
not true for the fast rotation equilibrium.  

Besides the variation of the magnetic field 
by plasma currents, another effect that must be 
taken into account is the relativistic modifica-
tion of the centrifugal force. In the slow rotat-
ing equilibrium, the centrifugal force plays no 
significant role being much smaller than both 
Lorentz’s and electric forces. On the contrary, 
in the fast rotating equilibrium it is almost 
equal to the Lorentz force while the electric 
force is small, being of the order of the relativ-
istic corrections in the limit 0Bn n .

Cold relativistic equilibrium   

For cold plasma, the relativistic macro-
scopic fluid radial force balance equation is 
written as

2

r
mv eeE v B

r c
(3)

where 2 2 1 2(1 )v c  is the relativistic fac-
tor, and    

( ) 4 ,r
dr rE endr (4)

.
4dB envdr c (5)

Integrating the preceding equations with 
v r , one obtains 1

2 2 2

0 02
1 0

r r

p p
rr x dx r x dx

r c
(6)

This equation can be solved with respect to 
for a given radial density distribution, or vice 
versa a solution for the function 2 ( )p r  can be 
sought for for a given radial profile of the rota-
tion frequency, ( )r . The case of rigid rota-
tion, ( ) constr , is of special interest as it 
characterizes a state of global thermal equilib-
rium, considered in Refs. 5, 6 for the non-
relativistic case. The relativistic cold global 
equilibrium is analyzed in the next Section.  

Rigid rotor equilibrium 

When  is independent of r , Eq. (6) reads  
2 2

2 2
02

22 (1 ) ( ) 0
1

xN x dx     (7) 

where r c , , and 
2 2

02 p BN n n . Dividing Eq. (7) by 
2(1 )  and differentiating with respect to 

gives
2 2

2 2 2 5 2
4 2 (2 )( )

(1 ) (1 )
N (8)

Eq. (5) then yields  
2

2 2 3 2
0

1
1 (1 )

B
B

(9)

The non-relativistic limit is obtained by simply 
putting 0  everywhere in Eqs. (8) and (9). 
Figs. 1 and 2 show radial profiles of the den-
sity, Eq. (8), and the axial magnetic field, 

1 Eq. (6) differs from Eq.(5.19) in Ref. 1 by the defini-
tion of through the magnetic field on the axis, rather 
than through the externally imposed magnetic field. This 
simplifies formulas (8) and (9) in comparison to their 
counterparts (5.22) and (5.23) in Ref. 1.
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Eq. (9), respectively, for different values of the 
normalized rotation frequency .

Physically acceptable solutions correspond 
to 1 0 , since otherwise ( )N  becomes 
negative everywhere. The actual density profile 
is given by Eq. (8) for 00 p , where 

p  represents the (normalized) value of the 
plasma radius pr , and 0  denotes the limiting 
radius where ( ) 0N . The latter can be given 
explicitly as  

1 22

0 2 1 2 2
2(1 )

(1 3 ) 1 (10)

For 1 , the density profile becomes para-
bolic,

2( ) 4( 1) 4N (11)

and Eq. (10) gives 0 1 0  In dimen-
sional units the limiting radius of the rigid-rotor 
equilibrium,  

Fig. 1. (Color online) Nonneutral plasma density, normal-
ized over the Brillouin density value 0Bn  evaluated with 
the magnetic field on the axis, vs. the normalized radius 

 for various values of the normalized rotation frequency 
,  indicated on the plot 

Fig. 2. (Color online) Axial magnetic field vs.  for dif-
ferent rotation frequencies ,  indicated on the plot. For 

0 ( ), B  corresponds to the externally applied uni-
form magnetic field

1 2
0

0 2
1

2
pccr (12)

shrinks to zero for 0Bn n , being proportional 
to the plasma frequency 0p  evaluated with the 
density at 0 . Under these conditions the 
relativistic correction of the centrifugal force is 
greater by a factor 0Bn n  than the axial mag-
netic field variation due to the azimuthal 
plasma current.  

The entire parabolic profile (11) of the fast 
rotational equilibrium can be observed experi-
mentally, when the radius pr  of the trapped 
nonneutral plasma approaches the limiting 
value 0r . This condition can be easily achieved 
with a suitable choice of the parameters as will 
be shown in the concluding section.  

For 0 , 2
0 1 9 8  Hence, in the 

slow rotational equilibrium the limiting radius 
is quite large if 0Bn n , being limited only by 
the maximum radius of a rigidly rotating frame 
that can be made up by real bodies,  

0 2
0

2

p

c cr r (13)

However, the equilibrium density profiles are 
not stepwise as predicted by classical theory, 
being peaked near the limiting radius as shown 
in Fig. 1.  

The density profile (8) assumes its maxi-
mum value at  

1 22

2 1 2 2

0

4(4 9 )
2(16 45 ) 8 9

max

1 2 3,
2 3 0, (14)

i.e., the plasma density monotonically de-
creases with the radius for 1 2 3 , while 
hollow density profiles are found for 

2 3 0 . Both monotonic and hollow den-
sity profiles shown in Fig. 1 are stable since 
they correspond to global equilibrium states (at 

0T ), which are not destroyed by like-
particle collisions [5].  

Brillouin density limit

By definition, the Brillouin limit represents the 
maximum density, maxn , that can be achieved 
within the allowed range of rigid-rotor frequen-
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cies. In the non-relativistic case, the limit is 
given by 0max Bn n . However Fig. 1 clearly 
shows that 0max Bn n  can be greater than 1. This 
is especially evident for 0  when the 
magnetic field shielding becomes very strong, 
as shown in Fig. 1.  

On the other hand, the plasma density re-
mains always smaller than the local Brillouin’s 
density limit, i.e., 2

0 0( ) [ ( ) ]B Bn n n B B ,
as shown in Fig. 3. For a given frequency of 
rotation the ratio Bn n  is maximal at 0  if 

1 1 2 , and at bigger radii if 
1 2 0 . The absolute maximum of Bn n

is reached for 1 2  and 0 , and it is 
equal to 1.
Thus, the inequality  

Bn n (15)

holds locally for every radius and every rota-
tion frequency (see Fig. 4), and can therefore 
be thought of as a relativistic generalization of 
the Brillouin density limit for rigidly rotating 
nonneutral plasmas. Differential rotation gener-
ally makes it possible for the plasma density to 
exceed the Brillouin limit as will be shown in 
the next section.

Differential rotation

For a non-uniform rotation frequency, it is 
useful to introduce a different normalization of 
the lengths; therefore in this section the normal-
ized radius is defined as r c . Eq. (6) 
then takes the form  

2

2 2 0

0

( ) ( )
21

1 ( ) 0
2

xN x x dx

xN x dx
(16)

For an arbitrary ( )N  the integral equilibrium 
equation (16) allows one to determine ( ) . Al-
ternatively, one can seek ( )N  for a given ( ) .
Since Eq. (16) is linear with respect to ( )N , the 
latter approach is usually more effective.  

Some general properties of the solutions can 
be deduced by using power series for  and 
N . If ( 0) 0N r , it results from (16) that 
both  and N  can be expanded in even pow-
ers of  (with one notable exception, see be-

low). Substituting 2
0

( ) k
kk

 and 

2
0

( ) k
kk

N N  into Eq. (16) and gathering 
the terms with the same power of  yields a 
chain of equations that allow to express kN
recursively through 1kN . At lowest order, this 
procedure leads to the relation

0 0 04 (1 )N (17)

that yields two frequencies, 0 , for a given 
density 0N  in agreement with the existence of 
two equilibria with slow and fast rotation. 
These two frequencies are the same as the non-
relativistic solutions in Eq. (1) (when expressed 
in dimensional units).  

Applying this procedure to the case of uni-
form density, 0( )N N , one easily obtains an 
approximate expression  

3
2 40 0

0
0

( ) (3 2)( ) ( )
2(2 1)

O (18)

Fig. 3. (Color online) Nonneutral plasma density, normal-
ized over 2 28 ,Bn B mc  vs. the normalized radius ,
for various values of the normalized rotation frequency 

,  indicated on the plot 

Fig. 4. (Color online) Nonneutral plasma density, normal-
ized over the local Brillouin density limit 2 28 ,Bn B mc

for different radii ,r c  indicated on the plot (solid 
curves), and the maximum of Bn n  (dashed envelope) vs. 

the rotation frequency 
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for ( )  which is valid for small  provided 
that 0  is not too close to 1 2 , i.e. 0 1N .
For 0 1N , the expansion in even powers of 

 is no longer valid, and a more accurate esti-
mate gives  

1 22
2

0
1 1 1( )
2 2 32

(19)

From a practical point of view it is more 
convenient to deal with a differential equation 
rather than the original integral equation (16). 
Namely, a differential equation of the form  

0N N (20)

can be derived by suitably differentiating 
Eq. (16) twice, where the prime stands for the 
derivative with respect to , and  and  are 
functions of , ,  and . Alternatively, 
one can obtain an equation of the form  

0 (21)

with  being a function of , , N  and 

0
( )x N x dx . Both (20) and (21) are first order 

ordinary differential equations (with respect to  

Fig. 5.  (Color online) Frequency vs. radius for the case of 
uniform density: (a)— 0 (0 5 0 02),  the plasma 

density at the axis is close to Brillouin’s limit, 
0(0) 0,998;Bn n  (b)— 0 (0 5 0 2),

0(0) 0 84Bn n

the functions ( )N  and ( ) , respectively), 
which can be solved, in general numerically, by 
standard methods. Eqs. (20) and (21) have a 
wider class of solutions then the original integral 
equation (16). For example, Eq. (20) generally 
admits a solution for any boundary condition 

0(0)N N , but only the solutions satisfying the 
relation (17) between 0 (0)N N  and 0 (0)
are acceptable, since they also obey the original 
integral equation (16). Similar considerations lead 
to the conclusion that for any given density pro-
file two rotational modes exist accordingly to two 
solutions 0  of Eq. (16).  

The two rotational modes found numerically 
for the case of uniform density are shown in 
Fig. 5 for two different values of 0N .

For the fast rotational equilibrium, it can be 
deduced from Eq. (18) that the frequency pro-
files are non-monotonic (as in Fig. 5 on the 
left) for 2 3 1 2 . Based on the non-
relativistic theory, these equilibria are expected 
to be unstable, since the derivative 

22 2 2d d  changes sign, while only 

monotonic profiles are proven to be certainly 
stable [7,8]. To the best of the author’s knowl-
edge, a consistent theory of the stability of 
nonneutral plasma equilibria with relativistic 
effects included is not available so far (except 
for the slow rotational mode—see [9]), so this 
problem deserves further analysis.  

The example of uniform density explicitly 
demonstrates that the plasma may in principle 
be unbounded since the limiting radius turns 
out to be infinite. For any value of 0N , the as-
ymptotic behavior of the rotation frequency for 

 is given by  

1 1
2

Radially bounded solutions are not an exclusive 
feature of rigidly rotating plasmas. The follow-
ing completely analytical solution illustrates 
this fact, although it is singular at the limiting 
radius 0 4r c :

2

1 1( )
2 1 ( 4) (22)

2

2 3

1 ( 4)( )
[1 ( 4) ]

N (23)

Despite the singularity, the modified Brillouin 
limit (15) holds in the entire range 0r r .
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Another peculiar solution

2

1( )
1

a
a

(24)

2 12( ) 2 1 ( )/ aN a H aa (25)

gives an example of annular vortex with inter-
nal radius 0a  ( H  denotes Heaviside’s step 
function). This fast rotational equilibrium is 
characterized by 

2

0 ( )aB B a  and constant 

relativistic factor 21 a . For the particu-
lar case 1a  the solution describes an annular 
vortex with uniform density  

( ) 1 2 ( ) 2 2 ( 1)N H (26)

This fast rotational equilibrium shows also 
that in the case of differential rotation the 
plasma density can exceed the Brillouin limit 
found for the case of rigid rotation, see inequal-
ity (15).

Discussion   

It has been shown that the relativistic 
change of the centrifugal force and the shield-
ing of the magnetic field by the azimuthal cur-
rent due to the rotating charged column 
strongly modify the equilibrium density profile 
of a nonneutral plasma even if the linear veloc-
ity of the rotation is small as compared to the 
speed of light.  

The modification becomes especially strong 
for the fast rigid rotor plasma equilibrium, 
when the azimuthal rotation frequency ap-
proaches the cyclotron frequency. In this case, 
the radial extent of the plasma column, allowed 
by the relativistic effects, turns out to be much 
smaller than the limiting radius, c , of a 
rigidly rotating frame that can be realized by 
real bodies. In addition, for the experimentally 
relevant case in which the limiting radius be-
comes comparable with the plasma radius pr ,
the density profile becomes nearly parabolic 
rather than stepwise as predicted by the non-
relativistic theory, see Eq. (11).  

The relativistic modification of the equilib-
rium density profile should be observable in 
experiments similar to those performed by The-
iss et al. [3] more than 30 years ago. Putting 

75 10n  cm 3  and 150B  gauss 
( 2 22 0 035p ) into Eq. (12) gives 

0 1 0cmr . For these parameters, thermal ef-

fects are negligible for 1eVT , since 

0 10Dr . In the earlier experiments [3], the 
plasma radius was ten times smaller than the 
limiting radius, so the authors did not notice the 
modification of the density profile.  

The radial extent of the nonneutral plasma 
column in the case of differential rotation may 
not be bounded in principle, as it has been 
demonstrated explicitly for the case of uniform 
plasma density. However, a non-uniformly ro-
tating plasma column may not be stable in con-
trast to the case of rigid rotation. Moreover, 
like-particle collisions tend to eliminate radial 
gradients of the rotation frequency. It is there-
fore expected that transport processes or vari-
ous instabilities lead to the formation of a rig-
idly rotating, radially bounded equilibrium.  

Finally, it has been found that the Brillouin 
density limit should be modified if the shield-
ing of the external magnetic field by the current 
associated with the plasma rotation is signifi-
cant. The modified Brillouin limit has been 
casted into the form (15) that relates the density 
of rigidly rotating plasma at a given radius with 
the magnetic field value at the same radius.  

In conclusion, it is worth noting that a cor-
rect self-consistent treatment of the plasma 
density profile close to the plasma edge re-
quires taking into account finite temperature 
corrections in the force balance equation, and 
relativistic effects are expected to play a sig-
nificant role modifying the solution that has 
been found earlier for the non-relativistic case 
[5]. The investigation of the relativistic warm 
plasma equilibrium is currently under way and 
will be reported elsewhere.  

This work has been performed during a visit 
of I. K. to the Department of Physics of the 
University of Milano thanks to a fellowship 
supported by the Cariplo Foundation and the 
Landau Network—Centro Volta.   
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