УДК 539.211 + 538.975

Д. И. Рогило, Л. И. Федина, С. С. Косолобов, А. В. Латышев

Институт физики полупроводников им. А. В. Ржанова СО РАН пр. Акад. Лаврентьева, 13, Новосибирск, 630090, Россия

> Новосибирский государственный университет ул. Пирогова, 2, Новосибирск, 630090, Россия

rogilo@isp.nsc.ru; fedina@isp.nsc.ru; kosolobov@isp.nsc.ru; latyshev@isp.nsc.ru

ФОРМИРОВАНИЕ ДВУМЕРНЫХ ОСТРОВКОВ НА ПОВЕРХНОСТИ Si(111) ПРИ ГОМОЭПИТАКСИАЛЬНОМ РОСТЕ *

Методом *in situ* сверхвысоковакуумной отражательной электронной микроскопии исследован процесс зарождения двумерных островков Si на экстра-широких (~ 10–100 мкм) атомно-гладких террасах поверхности Si(111). Установлено, что концентрация двумерных островков N_{2D} в зависимости от температуры подложки T и скорости осаждения кремния R подчиняется закону $N_{2D} \propto R^{\chi} \exp(E_{2D}/kT)$ с $\chi \approx 0,58$ или 0,82 и $E_{2D} \approx 1,77$ или 1,02 эВ для поверхности Si(111) со структурой (7×7) или (1×1) соответственно. Обнаружено, что в процессе роста при $T \sim 700$ °C на экстра-широких террасах критический зародыш состоит из *i* = 1 частицы и увеличивается до *i* = 7–10 частиц на террасах меньшей ширины, что обусловлено конкуренцией между процессами зародышеобразования и взаимодействием адатомов со ступенями, ограничивающими террасу.

Ключевые слова: кремний, эпитаксиальный рост, двумерные островки, атомные ступени, критический зародыш, поверхностная диффузия, отражательная электронная микроскопия.

Введение

Управление структурой и морфологией поверхности в процессе эпитаксиального роста является основой развития полупроводниковых технологий и представляет научный интерес для фундаментальной физики поверхности. Глубокое понимание атомных процессов на поверхности кристалла позволяет совершенствовать использование нестабильности (самоорганизации) рельефа поверхности для создания эпитаксиальных структур с необходимыми свойствами [1]. Для изучения атомных механизмов эпитаксиального роста и определения их параметров (энергия активации поверхностной диффузии, барьеры Швёбеля, прозрачность ступеней и т. д.) используется анализ зависимостей концентрации двумерных (2D) островков N_{2D} [2–5] и критической ширины λ [6–10] от температуры подложки *T* и скорости осаждения *R*:

$$\lambda^2 \propto R^{-\chi} \exp \frac{-E_{2D}}{kT},$$
 (1)

$$N_{2D}^{-1} = L_s^2 \propto R^{-\chi} \exp \frac{-E_{2D}}{kT},$$
 (2)

где L_s – характерное расстояние между 2D островками, k – постоянная Больцмана, E_{2D} – эффективная энергия активации двумерно-островкового зарождения и роста, χ – показатель масштабирования, связанный определенным образом с размером критического зародыша *i*. Зависимости (1) и (2) яв-

^{*} Работа выполнена при поддержке РФФИ (проекты № 13-02-01214, 14-02-31440) и гранта Президента РФ (НШ-2138.2014.8).

Рогило Д. И., Федина Л. И., Косолобов С. С., Латышев А. В. Формирование двумерных островков на поверхности Si(111) при гомоэпитаксиальном росте // Вестн. Новосиб. гос. ун-та. Серия: Физика. 2014. Т. 9, вып. 2. С. 156–166.

ляются результатом взаимодействия подвижных частиц адсорбата с подложкой и между собой и поэтому содержат информацию об энергиях активации диффузии E_d , размере критического зародыша *i* и барьерах Швёбеля E_{ES} для встраивания атомов в ступени. Обе формулы имеют одинаковую размерность и характеризуются одинаковой зависимостью от *T* и *R*, но будут ли экспериментальные зависимости $\lambda^2(R)$ и $N_{2D}(R)$ описываться одинаковыми величинами χ и E_{2D} ?

В рамках классической теории [11] предполагается, что критический зародыш 2D островка возникает при взаимодействии і подвижных частиц. Зародыши большего размера могут только расти, в то время как зародыши размера і и меньше растворяются. Однако зарождение и рост 2D островков Si и Ge на реконструированной поверхности Si(111)-(7×7), как показывают атомистические in situ исследования с помощью сканирующей туннельной микроскопии (СТМ), не укладываются в рамки простых классических представлений [5; 12; 13]. Во-первых, зарождение 2D островков нормируется на размер полуячейки структуры (7×7) так, что островки приобретают форму треугольника со стороной, равной *п* полуячеек, и площадью $-n^2$ полуячеек [12–14]. Во-вторых, зарождению 2D островков предшествует образование магических нанокластеров, которые определяют зарождение островков, флуктуацию моноатомных ступеней и массоперенос на поверхности Si(111)-(7×7) [5; 13; 15]. Показано, что в условиях отсутствия подвижности нанокластеров при T < 400 °C для зарождения 2D островка требуется формирование пары нанокластеров в соседних полуячейках структуры (7×7) [5]. Замечено также, что после зарождения 2D островков при T ~ 400 °C концентрация кластеров начинает резко падать [13]. Это указывает на их возможный сток в ступени, формирующиеся на краях 2D островков. И, наконец, при T > 400 °C кластеры становятся подвижными, скачком перемещаясь на большие расстояния так, что их путь движения в СТМ не визуализируется [15].

Таким образом, из данных СТМ следует необходимость не только нормирования размера зародыша 2D островка на размер полуячейки (7×7), но и рассмотрения мобильных нанокластеров в роли частиц, обеспечивающих формирование и рост критического зародыша. Ранее, при изучении критической ширины террасы λ для зарождения 2D островков на поверхности Si(111)– (7×7) с большим количеством ступеней, мы показали, что *i* = 7–10 при *T* = 700 °C [10]. С учетом данных СТМ такой большой размер зародыша может быть связан с конкурирующим стоком нанокластеров в ступени при высокой температуре.

Цель данной работы – выявление влияния конкурирующих стоков и поверхностной реконструкции на процессы диффузии и зародышеобразования при гомоэпитаксиальном росте Si на поверхности Si(111).

Методика эксперимента

Для изучения процессов зародышеобразования на поверхности Si(111) использовался метод in situ сверхвысоковакуумной отражательной электронной микроскопии (СВВ ОЭМ), который позволяет визуализировать рост 2D островков и движение моноатомных ступеней при различных воздействиях [7]. Из стандартных пластин Si *n*-типа с удельным сопротивлением 0,3 Осм и разориентацией поверхности ~ 0,5° вырезались образцы с размерами $8 \times 1, 1 \times 0, 3$ мм³, которые размещались в СВВ камере ОЭМ. Подробно подготовка образцов для метода in situ CBB ОЭМ изложена в работе [7]. Особенностью метода ОЭМ является сжатие изображений в несколько десятков раз вдоль направления падения пучка электронов, что приводит к сильному искажению формы атомных ступеней и 2D островков. Поэтому детальный анализ формы островков и их распределения на поверхности проведен с помощью атомно-силовой микроскопии (АСМ).

Получение атомно-чистой поверхности Si(111) достигалось резистивным прогревом образца в СВВ ОЭМ при $T > 1\,300$ °C и последующим нагревом постоянным током при $T = 1\,050-1\,300$ °C. В таких условиях, за счет эффекта эшелонирования моноатомных ступеней, происходит формирование атомно-гладких террас шириной до 10 мкм, разделенных эшелонами (скоплениями) ступеней [16]. Чистота поверхности Si(111) контролировалась по отсутствию частиц загрязнения и наличию обратимого сверх-структурного перехода (1×1) \Leftrightarrow (7×7) при $T_c = 830$ °C [17]. Для получения зависимостей N_{2D} от T и R на реконструированной

Рис. 1. ОЭМ-изображение экстра-широкой террасы при T = 950 °С после начала осаждения Si со скоростью R = 0,16 MC/с: a - 0 с; $\delta - 0,2$ с; e - 0,8 с; e - 1,2 с; $\partial - 1,8$ с; e - 6,2 с. Формой стрелок схематично показан локальный рельеф поверхности – углубления и выступы (2D островки) высотой в одно межплоскостное расстояние на поверхности Si(111)

Рис. 2. Топографическое ACM-изображение поверхности Si(111) после осаждения (*a*) $\Theta \approx 0,65$ MC Si при T = 850 °C и (б) $\Theta \approx 0,15$ MC при T = 750 °C (антифазные границы, разделяющие отдельные домены сверх-структуры (7×7), декорированы протяженными узкими двумерными островками и отмечены белыми стрелками)

поверхности Si(111) образец быстро охлаждался со скоростью ~ 400 К/с до $T \approx 830$ °C, а затем медленно – со скоростью ~ 0,1 К/с до 790 °C, что было необходимо для создания максимально широких сверхструктурных доменов, вплоть до размеров террасы. Использованная методика подготовки поверхности образца позволяет формировать сверхструктурные домены площадью до ~ 10–100 мкм². Для создания экстра-широких атомно-гладких террас (диаметром до 150 мкм) на исходных образцах методом ионного травления создавалось небольшое углубление, на дне которого при последующем отжиге в СВВ ОЭМ формировалась круглая атомно-гладкая терраса [18].

Результаты

На рис. 1 представлена серия ОЭМ изображений начальных стадий гомоэпитаксиального роста на атомно-гладкой террасе поверхности Si(111) диаметром ~ 100 мкм при T = 950 °C. Из-за сжатия ОЭМ изображения круглая терраса отображается в виде узкой горизонтальной полосы светлого контраста, ограниченной двумя моноатомными ступенями (узкие темные линии на рис. 1, а). Начало формирования 2D островков в виде узких темных линий наблюдается при достижении покрытия Si $\Theta \lesssim 0.03$ MC (рис. 1, δ) $(1 \text{ MC} = 1,56 \cdot 10^{15} \text{ см}^{-2})$. Один из растущих 2D островков на данном рисунке отмечен стрелкой, форма которой схематически обозначает локальный рельеф поверхности. Далее, по мере увеличения Θ , 2D островки растут без зарождения новых (рис. 1, в-д) вплоть до формирования сплошного слоя

за счет их коалесценции (рис. 1, *e*). Этот момент фиксировался как $\Theta = 1$ MC и использовался для вычисления скорости осаждения *R*. Вычисление N_{2D} осуществлялось по ОЭМ изображениям при $\Theta \sim 0,05$ MC. Реальная форма 2D островков представлена на ACM изображении (рис. 2, *a*). Можно видеть, что все 2D островки имеют гладкую округлую форму, характерную для атомных ступеней на поверхности Si(111)–(1×1) [19].

На следующем этапе были проведены in situ эксперименты по субмонослойному осаждению Si на поверхность Si(111)-(7×7). После формирования при T = 1.050 - 1.300 °C на поверхности образца широких атомногладких террас (светлые участки на рис. 3, *a*), разделенных эшелонами ступеней (широкие полосы темного контраста), и охлаждения до температуры *T* < *T_c* начиналось осаждение Si. Если ширина изначальной террасы превышала критическую ширину λ, на ней начиналось зарождение 2D островков. Из-за высокой их концентрации визуализация каждого островка в отдельности на ОЭМ изображениях при $T < T_c$ затруднена: их изображение представляет собой область пятнистого черно-белого контраста (рис. 3, б).

Рис. 3. Слева: ОЭМ-изображение стадий формирования пирамидальной структуры на Si(111)–(7×7) в процессе длительного осаждения Si при T = 650 °C и $R = 1,3 \cdot 10^{-2}$ MC/c: $a - \Theta = 0; \delta - \Theta = 0,5$ MC; $s - \Theta = 10$ MC; $z - \Theta = 44$ MC. Справа: схематическое представление движения ступеней при формирования пирамидальной структуры ($\Theta = 0-13$ MC) и в процессе ее периодической эволюции ($\Theta > 13$ MC) при постоянных *T* и *R*

Рис. 4. Экспериментальные зависимости (a) $L_s^2(R)$: 1-950 °C; 2-850 °C; 3-750 °C; 4-700 °C; 5-650 °C; (б) $N_{2D}(T)$: 1-0,125 МС/с и $T > T_c$; 2-0,03 МС/с и $T < T_c$

Puc. 5. Зависимости расстояния от области двумерно-островкового зарождения до (*a*) восходящего $X_{\rm B}(\Theta)$ и (*б*) нисходящего $X_{\rm H}(\Theta)$ эшелонов ступеней по данным *in situ* CBB ОЭМ эксперимента при T = 700 °C и $R = 6,7\cdot10^{-2}$ MC/c

На рис. 2, б приведено ACM изображение 2D островков, сформировавшихся после осаждения 0,15 MC кремния на поверхность Si(111)–(7×7) при T = 750 °C. Можно видеть, что в пределах сверхструктурных доменов формируются островки с выраженной треугольной огранкой, которая также наблюдается при травлении реконструированной поверхности Si(111) в атмосфере кислорода [20]. 2D островки, зародившиеся на антифазных границах, разделяющих смежные домены сверхструктуры (7×7), имеют протяженную узкую форму и отмечены белыми стрелками. Вблизи таких островков и атомных ступеней хорошо видны зоны обеднения, где зарождение 2D островков подавлено встраиванием адатомов в протяженные стоки. Ближайшие к зонам обеднения островки имеют несколько больший размер и меньшую концентрацию, чем в центральной части домена. Вычисление N_{2D} осуществлялось по *ex situ* ACM изображениям морфологии поверхности Si(111) после осаждения 0,15 MC при различных $T < T_c$ и *R*. Для обеспечения корректности результатов, все измерения N_{2D} проводились в центральной части доменов, вдали от конкурирующих стоков.

На рис. 4 представлены сводные экспериментальные зависимости $N_{2D}(R,T)$, полученные во всем диапазоне T = 650-1090 °C. Из наклона степенных аппроксимаций $N_{2D}(R) \propto R^{\chi}$, построенных в двойном логарифмическом масштабе, можно извлечь значения показателя масштабирования χ (рис. 4, *a*). Зависимости *I* и *2*, обозначенные ромбами ($T > T_c$), соответствует $\chi = 0,81-0,82$, а зависимости *3-5*, обозначенные треугольниками ($T < T_c$), характеризуются наклоном $\chi = 0,53-0,62$.

На рис. 4, б приведена экспериментальная зависимость $N_{2D}(T)$ при R = 0,125 MC/с (цифра 1), построенная в координатах Аррениуса в диапазоне T = 850-1090 °C. Из наклона аппроксимации можно вычислить эффективную энергию активации двумерноостровкового зарождения $E_{2D} \approx 1,02$ эВ. Кроме того, на основе трех степенных аппроксимаций зависимостей 3-5 на рис. 4, *а* можно построить зависимость $N_{2D}(T)$ при $T < T_c$ (цифра 2), наклон которой соответствует $E_{2D} \approx 1,77$ эВ.

На рис. 3, б можно видеть, что после осаждения $\Theta = 0,5$ MC вблизи моноатомных ступеней и эшелонов ступеней сформировались зоны обеднения, где зарождения 2D островков не произошло. Взаимодействие диффундирующих по поверхности адатомов Si со ступенями приводит к встраиванию адатомов в них и к подавлению зарождения 2D островков в данных областях. Дальнейшее осаждение Si приводит к росту и коалесценции 2D островков и к формированию при $\Theta = 1$ MC нового слоя, ограниченного моноатомной ступенью. Далее, при неизменных Т и R, вновь происходит зарождение 2D островков и формируется зона обеднения. Формирование каждого сплошного слоя легко фиксируется по исчезновению

пятнистого контраста от 2D островков, происходящему периодически после осаждения количества Si, кратного 1 МС. Из-за стока адатомов в моноатомные ступени и эшелоны ступеней, при продолжительном осаждении Si увеличиваются расстояния X_в и X_н (рис. 3, в) от области двумерно-островкового зарождения до восходящего и нисходящего эшелонов ступеней соответственно. Иными словами, наблюдается уменьшение ширины области двумерно-островкового зарождения. Важно отметить, что по данным in situ CBB ОЭМ экспериментов увеличение Х_в и Х_н подчиняется степенному закону $X_{\text{в,H}} \propto \Theta^{\alpha} = (Rt)^{\alpha}$, причем для $X_{\text{в}}(\Theta)$ и $X_{\text{H}}(\Theta)$ показатель степени α принимает разные значения (рис. 5).

На рис. 3 справа схематически представлен график движения моноатомных ступеней при увеличении Θ. Форма горизонтальных сечений схематично показывает рельеф поверхности, а стрелки – движение ступеней в направлении нижележащих террас (случай эпитаксиального роста). При каждом значении Θ , равном целому числу MC, происходит зарождение 2D островков (обозначены на сечениях штриховой линией). В процессе роста, из-за стока адатомов в эшелоны ступеней (вертикальные линии на графике слева и справа), зарождение 2D островков происходит дальше от эшелонов ступеней с каждым следующим осажденным монослоем (Х_в и Х_н увеличивается с увеличением Θ). В таком случае, если $X_{\text{в.н}} \propto \Theta^{\alpha}$, что обнаружено в эксперименте (см. рис. 5), длительное осаждение Si на поверхность с широкими атомно-гладкими террасами, разделенными эшелонами ступеней, через некоторое время неизбежно приведет к уменьшению ширины области двумерно-островкового зарождения до нуля. Таким образом, сформируется структура, состоящая из двумерных слоев, расположенных друг на друге, и напоминающая в поперечном сечении пирамиду (рис. 3, г). АСМ изображение такой структуры, сформированной на повехности Si(111)-(7×7), приведено на рис. 6, а. Из его распределения высот (рис. 6, б) видно, что высота ступени составляет около 0,3 нм – одно межплоскостное расстояние для поверхности Si(111) [21].

В стационарных условиях роста (при постоянных T и R) морфология пирамидальной структуры (рис. 7, a) изменяется перио-

Рис. 6. Топографическое ACM-изображение (*a*), его распределение высот (*б*), ОЭМ-изображение (*в*) и схематическое изображение (*г*) пирамидальной структуры, сформированной и отожженной при $T = 670^{\circ}$ С. Черными и белыми стрелками обозначены моноатомные ступени и эшелоны ступеней соответственно

Рис. 7. Стадии роста пирамидальной структуры: a – увеличение ширины наивысшей террасы до критического значения; δ – зарождение и рост 2D островков; e – коалесценция 2D островков и формирование нового слоя

дически. После зарождения и разрастания 2D островков (рис. 7, б) на наивысшем слое происходит коалесценция островков (рис. 7, в). Этот процесс завершается формированием нового 2D слоя и пары моноатомных ступеней, ограничивающих его. Дальнейшее осаждение кремния сопровождается смещением этих ступеней в противоположные стороны (ширина наивысшей террасы увеличивается), и этот процесс происходит до тех пор, пока ширина не достигнет критического значения λ (см. рис. 7, *a*). По достижении критической ширины в центральной части террасы зарождаются островки нового слоя. Затем весь процесс повторяется сначала, а ступени, ограничивающие слои, продолжают двигаться в противоположных направлениях по ступенчато-слоевому механизму роста. В дальнейшем одни из них встраиваются в нисходящий эшелон ступеней (слева), а другие аннигилируют со ступенями восходящего эшелона (справа). Описанное *периодическое* зарождение 2D островков на наивысшей террасе пирамидальной структуры позволило измерить λ при различных *T* и *R* в *in situ* ОЭМ экспериментах. На рис. 8 представлены зависимости $\lambda^2(R)$ при трех различных $T < T_c$.

Обсуждение результатов

Анализ экспериментальных зависимостей $\lambda^{2}(R)$ проводился с помощью теоретического подхода, развитого в [9]. Общее аналитическое выражение для зависимости $\lambda(T,R)$, выведенное авторами, учитывает наличие барьеров Швёбеля *E*_{ES} для встраивания адатомов в ступени. Если E_{ES} достаточно велик, то встраивание в ступень лимитирует кинетику эпитаксиального роста (AL режим кинетики, attachment limited). В противном случае встраивание в ступень происходит быстро, по сравнению с диффузией адатомов к ступени, и кинетику роста лимитирует поверхностная диффузия (DL режим кинетики, diffusion limited). В обоих предельных случаях общее аналитическое выражение $\lambda(T,R)$ приводится к виду (1), но с различными выражениями E_{2D} и χ :

$$E_{2D}^{DL} \neq E_{2D}^{AL},$$

$$\chi^{DL} = \frac{i}{i+2},$$
 (3)

$$\chi^{AL} = \frac{2i}{i+3}.$$
 (4)

Можно видеть, что в случае DL-режима χ не может принимать значения, больше единицы (3). Все три зависимости $\lambda^2(R)$ (рис. 8), полученные при различных Т, характеризуются показателями масштабирования $\chi > 1$. Такие большие значения χ означают, что в диапазоне температур T = 650-720 °C кинетика роста Si на поверхности Si(111)–(7 \times 7) лимитирована встраиванием в атомные ступени (AL), а у описываются формулой (4). Тогда, зарегистрированное при $T = 700 \,^{\circ}\mathrm{C}$ значение $\chi = 1.46 \pm 0.10$ соответствует критическому зародышу, состоящему из 7-10 атомов. Ранее мы показали, что в таких условиях кинетика роста лимитируется встраиванием адатомов в нисходящие ступени с барьером Швёбеля $E_{ES} \approx \approx 0.9$ эВ, дополнительным к Е_d и связанным с зарож-

Рис. 8. Экспериментальные зависимости $\lambda^2(R)$

дением двойного излома на прямолинейных участках ступеней с ориентацией типа [-1 -1 2] [10].

Анализ зависимостей $N_{2D}(R)$ проводился в рамках классической теории скоростей зародышеобразования [11], разработанной для DL-режима кинетики, и ее расширения на случай AL-режима кинетики с ненулевыми E_{ES} [22]. Зависимости $L_S^2 = N_{2D}^{-1}$ от скорости осаждения R принимают вид (2), для показателя χ в DL- и AL-режимах справедливы формулы (3) и (4), а для эффективной энергии активации E_{2D} :

$$E_{2D}^{DL} = \chi^{DL} (E_i / i + E_d), \qquad (5)$$

$$E_{2D}^{AL} = \chi^{AL} (E_i / i + E_d + E_{ES}), \qquad (6)$$

где E_i – энергия диссоциации критического зародыша на *i* отдельных частиц.

Выше, на основании анализа зависимостей $\lambda^2(R)$, нами было показано, что при *T* ~ 700 °C кинетика роста лимитирована встраиванием в ступень. Тогда, согласно (4), значениям $\chi^{AL} = 0,53-0,62$ (см. рис. 4, *a*) соответствует критический зародыш $i \approx 1$. По определению, энергия диссоциации такого критического зародыша $E_1 = 0$. Тогда из (6) с использованием $E_{ES} \approx 0.9$ эВ [10] и значений $E_{2D} \approx 1,77$ эВ и $\chi^{4L} = 0,53-0,62$ (см. рис. 4) получим оценку энергии активации поверхностной диффузии $E_d^{7\times7} \approx 2,0-2,4$ эВ. Эти значения намного превышают 1,14 эВ – величину энергии активации диффузионного скачка адатомов между полуячейками структуры (7×7), полученную экспериментально и из первопринципных расчетов [23; 24]. Однако если принять, что адатомы Si при повышенных температурах быстро агрегируют в подвижные нанокластеры [15; 25], то полученная нами оценка $E_d^{7\hat{\times}7} \approx 2,0-$ 2,4 эВ лежит в том же диапазоне энергий, что и энергия активации диффузионных скачков нанокластеров [15]. Это указывает на возможность существования подвижных нанокластеров вплоть до $T = 750 \,^{\circ}\text{C}$ и их ключевую роль в двумерно-островковом зарождении в качестве частиц, за счет поглощения которых формируется и растет 2D зародыш на поверхности Si(111)-(7×7). В таком случае следует принять, что значения $\chi^{AL} = 0.53 - 0.62$ соответствуют критическому зародышу, состоящему из одного нанокластера (i = 1).

Такой зародыш в рамках классических представлений предполагает, что взаимодействие пары подвижных кластеров приведет к формированию стабильного зародыша. Данный результат исключительно хорошо согласуется с необходимостью формирования близкой пары нанокластеров для зарождения 2D островка, наблюдаемой в СТМ при $T \sim 400$ °C, когда кластеры неподвижны [5]. Отсюда следует, что стабильный зародыш может формироваться из пары нанокластеров независимо от того, подвижны кластеры или нет, если влияние стоков в ступени пренебрежимо мало (размер террасы много больше критической ширины λ для двумерно-островкового зарождения [10]). Однако при зарождении 2D островка на террасе шириной λ конкуренция со стоком в атомные ступени становится существенной, и размер критического зародыша возрастает до *i* ≈ 7–10 [10].

При высоких температурах ($T > T_c$), как известно, кинетика процессов на поверхности Si(111) лимитируется поверхностной диффузией (DL-режим) [19; 26; 27]. В рамках классической теории скоростей зародышеобразования [11], полученные значения $\chi \approx 0.82$ соответствует размеру критического зародыша i = 9 (см. рис. 4, *a*). Согласно современным теоретическим представлениям, значение $i \gg 1$ может наблюдаться для DLрежима в условиях большой вероятности отделения атомов от зародышей [28; 29]. Однако в этом случае $\chi \rightarrow \chi^* < 1$ при $i \rightarrow \infty$ [29; 30], в отличие от предсказания классической теории $\chi \rightarrow 1$ при $i \rightarrow \infty$ (3). Поэтому полученное значение $\chi^{DL} \approx 0,82$ соответствует, по-видимому, большим размерам критического зародыша [30], чем в соответствии с (3), т. е. $i \ge 9$. Такой большой критический зародыш уже, фактически, представляет собой 2D островок, так что процесс выхода атомов из него аналогичен выходу атома из ступени в положение адсорбции на террасе. В таком случае, считая, что на поверхности Si(111) взаимодействие адатомов со ступенью (встраивание и выход) происходит парами [26], удельную энергию диссоциации критического зародыша E_i/i можно оценить как половину энергии E_{ad} , необходимой для формирования пары адатомов при их выходе из моноатомной ступени (энергия адсорбции пары адатомов на террасе):

$$E_i / i \approx E_{ad} / 2$$

Далее, используя формулу (5) с учетом $E_{ad} = 0.23$ эВ из [26], а также полученных $\chi^{DL} = 0.82$ и $E_{2D} = 1.02$ эВ, получим оценку энергии активации диффузии адатомов на поверхности Si(111)–(1×1):

$$E_d^{1\times 1} \approx \frac{E_{2D}}{\chi^{DL}} - \frac{E_{ad}}{2} = 1,13$$
 3B.

Данная оценка несколько меньше, чем 1,30 эВ в [26], но по сумме $E_d + E_{ad} = 1,36$ эВ близка к полученным ранее 1,3 эВ [19] и 1,2 эВ [31].

Заключение

Нами впервые показано, что в условиях минимизации стоков в ступени, на поверхности Si(111) со структурой (7×7) при T == 650-750 °С и со структурой (1×1) при T = 850-1 100 °C критический зародыш состоит из i = 1 и $i \gtrsim 9$ частиц, диффундирующих с энергиями активации $E_d^{7\times7} = 2,0-$ 2,4 эВ и $E_d^{1\times 1} = 1,1$ эВ соответственно. Существенное различие полученных величин связано с принципиальным различием механизмов диффузии и зародышеобразования на поверхности Si(111) со сверхструктурой (7×7) и без нее. На реконструированной поверхности эти процессы осуществляются за счет движения и взаимодействия нанокластеров, а при отсутствии реконструкции – за счет адатомов. Наш результат i = 1 при T <<830°С позволяет рассматривать пару нанокластеров в качестве стабильного зародыша в отсутствие конкурирующих стоков вплоть до температур, близких к сверхструктурному переходу. Более того впервые экспериментально показано, что размер критического зародыша увеличивается от i = 1 до i = 7-10 при анализе двумерноостровкового зарождения без влияния конкурирующих стоков и на террасе критической ширины соответственно.

Список литературы

1. *Misbah C., Pierre-Louis O., Saito Y.* Crystal Surfaces in and out of Equilibrium: A Modern View // Rev. Mod. Phys. 2010. Vol. 82. P. 981–1040.

2. Kryukov Y. A., Amar J. G. Scaling of the Island Density and Island-Size Distribution in Irreversible Submonolayer Growth of Three-Dimensional Islands // Phys. Rev. B. 2010. Vol. 81. P. 165435.

3. *Cherepanov V., Voigtländer B.* Influence of Material, Surface Reconstruction, and Strain on Siffusion at the Ge(111) Surface // Phys. Rev. B. 2004. Vol. 69. P. 125331.

4. Venables J. A. Atomic Processes in Crystal Growth // Surf. Sci. 1994. Vol. 299–300. P. 798–817.

5. *Filimonov S., Cherepanov V., Hervieu Y., Voigtländer B.* Multistage Nucleation of Two-Dimensional Si Islands on Si(111)–7×7 during MBE Growth: STM Experiments and Extended Rate-Equation Model // Phys. Rev. B. 2007. Vol. 76. P. 035428.

6. *Iwanari S., Takayanagi K.* Surfactant Epitaxy of Si on Si(111) Surface Mediated by a Sn Layer I. Reflection Electron Microscope Observation of the Growth with and without a Sn Layer Mediate the Step Flow // J. Cryst. Growth. 1992. Vol. 119. No. 3–4. P. 229–240.

7. Latyshev A. V., Krasilnikov A. B., Aseev A. L. Self-Diffusion on Si(111) Surfaces // Phys. Rev. B. 1996. Vol. 54. P. 2586–2589.

8. *Chung W. F., Bromann K., Altman M. S.* The Transition to Step Flow Growth on the Clean and Surfactant Covered Si(111) Surface Studied by In-Situ LEEM // Int. J. Mod. Phys. B. 2002. Vol. 16. P. 4353–4362.

9. Ranguelov B., Altman M. S., Markov I. Critical Terrace Width for Step Flow Growth: Effect of Attachment-Detachment Asymmetry and Step Permeability // Phys. Rev. B. 2007. Vol. 75. P. 245419.

10. Rogilo D. I., Fedina L. I., Kosolobov S. S., Ranguelov B. S., Latyshev A. V. Critical Terrace Width for Two-Dimensional Nucleation during Si Growth on Si(111)– (7×7) Surface // Phys. Rev. Lett. 2013. Vol. 111. P. 036105. 11. *Venables J. A.* Rate Equation Approaches to Thin Film Nucleation Kinetics // Philos. Mag. 1973. Vol. 27. No. 3. P. 697–738.

12. Voigtländer B., Kästner M., Šmilauer P. Magic Islands in Si/Si(111) Homoepitaxy // Phys. Rev. Lett. 1998. Vol. 81. P. 858–861.

13. Teys S. A., Talochkin A. B., Olshanetsky B. Z. Formation of Ge Nanoislands before the Completion of a Wetting Layer in the Ge/Si(111) System // J. Cryst. Growth. 2009. Vol. 311. No. 15. P. 3898–3903.

14. Mysliveček J., Jarolímek T., Šmilauer P., Voigtländer B., Kästner M. Magic Islands and Barriers to Attachment: A Si/Si(111)7×7 Growth Model // Phys. Rev. B. 1999. Vol. 60. P. 13869–13873.

15. Ho M. S., Hwang I. S., Tsong T. T. Formation of Si Clusters and Their Role in Homoepitaxial Growth on Si(111)– 7×7 Surface // Surf. Sci. 2004. Vol. 564. No. 1–3. P. 93– 107.

16. Latyshev A. V., Aseev A. L., Krasilnikov A. B., Stenin S. I. Transformations on Clean Si(111) Stepped Surface during Sublimation // Surf. Sci. 1989. Vol. 213. No. 1. P. 157–169.

17. Takayanagi K., Tanishiro Y., Takahashi M., Takahashi S. Structural Analysis of Si(111)-7×7 by UHV-Transmission Electron Diffraction and Microscopy // J. Vac. Sci. Technol. A. 1985. Vol. 3. No. 3. P. 1502–1506.

18. Sitnikov S. V., Kosolobov S. S., Latyshev A. V. The Kinetics of Negative 2D-Islands on Si (111) Surface during Sublimation // Proceedings of the International Conference and Seminar on Micro/Nanotechnologies and Electron Devices EDM 2009. P. 56–58.

19. *Hibino H., Hu C. W., Ogino T., Tsong I. S. T.* Decay Kinetics of Two-Dimensional Islands and Holes on Si(111) Studied by Low-Energy Electron Microscopy // Phys. Rev. B. 2001. Vol. 63. P. 245402.

20. Kosolobov S., Nasimov D., Sheglov D., Rodyakina E., Latyshev A. Atomic Force Microscopy of Silicon Stepped Surface // Phys. Low-Dimens. Str. 2002. Vol. 5/6. P. 231–238.

21. Fedina L. I., Sheglov D. V., Kosolobov S. S., Gutakovskii A. K., Latyshev A. V. Precise Surface Measurements at the Nanoscale // Meas. Sci. Technol. 2010. Vol. 21. No. 5. P. 054004.

22. *Kandel D*. Initial Stages of Thin Film Growth in the Presence of Island-Edge Barriers // Phys. Rev. Lett. 1997. Vol. 78. P. 499–502.

23. Sato T., Kitamura S., Iwatsuki M. Surface Diffusion of Adsorbed Si Atoms on the

165

Si(111)7×7 Surface Studied by Atom-Tracking Scanning Tunneling Microscopy // J. Vac. Sci. Technol. A. 2000. Vol. 18. No. 3. P. 960–964.

24. Chang C. M., Wei C. M. Diffusion of an Adsorbed Si Atom on the Si(111)– (7×7) Surface // Phys. Rev. B. 2003. Vol. 67. P. 033309.

25. Ong W., Tok E. S., Johll H., Kang H. C. Self-Assembly, Dynamics, and Structure of Si Magic Clusters // Phys. Rev. B. 2009. Vol. 79. P. 235439.

26. Pang A. B., Man K. L., Altman M. S., Stasevich T. J., Szalma F., Einstein T. L. Step Line Tension and Step Morphological Evolution on the Si(111)(1×1) Surface // Phys. Rev. B. 2008. Vol. 77. P. 115424.

27. *Gibbons B. J., Schaepe S., Pelz J. P.* Evidence for Diffusion-Limited Kinetics during Electromigration-Induced Step Bunching on Si(111) // Surf. Sci. 2006. Vol. 600. No. 12. P. 2417–2424.

28. Ratsch C., Šmilauer P., Zangwill A., Vvedensky D. D. Submonolayer Epitaxy without a Critical Nucleus // Surf. Sci. 1995. Vol. 329. No. 1–2. P. L599–L604.

29. Неизвестный И. Г., Шварц Н. Л., Яновицкая З. Ш. Двумерное зарождение в процессе эпитаксии при большом размере критического зародыша // Микроэлектроника. 2002. Т. 31, вып. 2. С. 84–92.

30. Ratsch C., Zangwill A., Šmilauer P., Vvedensky D. D. Saturation and Scaling of Epitaxial Island Densities // Phys. Rev. Lett. 1994. Vol. 72. P. 3194–3197.

31. Pimpinelli A., Villain J., Wolf D. E., Métois J. J., Heyraud J. C., Elkinani I., Uimin G. Equilibrium Step Dynamics on Vicinal Surfaces // Surf. Sci. 1993. Vol. 295. No. 1–2. P. 143– 153.

Материал поступил в редколлегию 23.05.2014

D. I. Rogilo, L. I. Fedina, S. S. Kosolobov, A. V. Latyshev

Institute of Semiconductor Physics of SB RAS 13 Lavrentiev Str., Novosibirsk, 630090, Russian Federation

Novosibirsk State University 2 Pirogov Str., Novosibirsk, 630090, Russian Federation

rogilo@isp.nsc.ru; fedina@isp.nsc.ru; kosolobov@isp.nsc.ru; latyshev@isp.nsc.ru

FORMATION OF TWO-DIMENSIONAL ISLANDS ON SI(111) SURFACE DURING HOMOEPITAXIAL GROWTH

The nucleation of two-dimensional Si islands has been studied by *in situ* ultrahigh vacuum reflection electron microscopy on extra-large (~ 10–100 µm) atomically flat terraces of Si(111) surface. The dependence of two-dimensional island concentration N_{2D} on substrate temperature T and silicon deposition rate R is found to obey relation $N_{2D} \propto R^{\chi} \exp(E_{2D}/kT)$ with $\chi \approx 0.58$ or 0.82 and $E_{2D} \approx 1.77$ eV or 1.02 eV on the Si(111) surface with (7×7) or (1×1) structure, respectively. The critical nucleus during the growth on the extra-large terraces is found to consist of i = 1 particle at $T \sim 700^{\circ}$ C, and the critical nucleus size increases to i = 7-10 on terraces with smaller width, which is caused by the competition between the 2D island nucleation and the interaction of adatoms with steps bordering the critical terrace.

Keywords: silicon, epitaxial growth, two-dimensional islands, atomic steps, critical nucleus, surface diffusion, reflection electron microscopy.