С. В. Савелькаев¹, В. С. Айрапетян¹, В. А. Литовченко^{1, 2}

¹ Сибирский государственный университет геосистем и технологий ул. Иванова, 49, Новосибирск, 630117, Россия

² Новосибирское высшее военное командное училище ул. Плахотного, 10, Новосибирск, 630108, Россия

kaf.suit@ssga.ru, v.s.ayrapetyan@ssga.ru, litovchienko.vladimir@mail.ru

ТРЕХСЕКЦИОННАЯ ДРЕЙФОВО-ДИФФУЗИОННАЯ МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПОЛЕВОГО ТРАНЗИСТОРА С БАРЬЕРОМ ШОТТКИ

Предложена трехсекционная дрейфово-диффузионная математическая модель полевого транзистора с барьером Шоттки. Она учитывает накопление носителей заряда в дополнительно введенной третьей секции, что существенно повышает точность расчета пологой области вольт-амперных характеристик таких транзисторов. Это важно для разработчиков как этих транзисторов, так и усилительных и автогенераторных СВЧ-устройств. *Ключевые слова*: математическая модель, барьер Шоттки, СВЧ-устройство.

В настоящее время в качестве активных компонентов усилительных и автогенераторных СВЧ-устройств сантиметрового диапазона преимущественно используют полевые транзисторы с затвором Шоттки (ПТБШ) [1]. Их широкое внедрение в СВЧ-технику обусловлено тем, что их граничная частота почти на порядок выше, чем у биполярных транзисторов, и для ПТБШ на основе n-GaAs с коротким затвором *L* << 1,5 мкм достигает 30-40 ГГц, а при переходе к гетероструктурам на основе слоев GaInAs, GaInAsP, AlInAs до 100 ГГц [2; 3]. Кроме того, ПТБШ в сравнении с биполярными транзисторами, диодами Гана и лавинно-пролетными диодами имеют существенно меньший собственный коэффициент шума, высокую термостабильность, более универсальны в применении и технологичны в изготовлении.

В работах [4–7] предложена двухсекционная дрейфово-диффузионная математическая модель ПТБШ с каналом *n-GaAs* типа. Ее недостаток состоит в том, что она не учитывает того, что у ПТБШ с коротким затвором $L \ll 1,5$ мкм или близким к короткому L < 1,5 мкм накопление электронов происходит не только в секции 2, но и в некоторой дополнительной секции 3 проводящей части его канала. В результате чего заряд стационарного домена с отрицательным дифференциальным сопротивлением, формирование которого вызвано накоплением электронов в проводящей части канала ПТБШ, оказывается значительно заниженным, что приводит к существенной погрешности расчета пологой области его вольтамперных характеристик (ВАХ).

Поэтому разработка трехсекционной дрейфово-диффузионной математической модели ПТБШ, которая учитывает накопление электронов в секции 3 проводящей части его канала, является актуальной.

Исходными данными для разработки трехсекционной дрейфово-диффузионной математической модели ПТБШ с каналом *n-GaAs* типа, например, такого как 3П602А, являются его физико-топологические параметры:

ISSN 1818-7994. Вестник НГУ. Серия: Физика. 2015. Том 10, выпуск 1 © С. В. Савелькаев, В. С. Айрапетян, В. А. Литовченко, 2015

Савелькаев С. В., Айрапетян В. С., Литовченко В. А. Трехсекционная дрейфово-диффузионная математическая модель полевого транзистора с барьером Шоттки // Вестн. Новосиб. гос. ун-та. Серия: Физика. 2015. Т. 10, вып. 1. С. 57–62.

• диффузионный потенциал	
барьера Шоттки Uд, В	0,8
• концентрация донорной при-	
меси N_D , см ⁻³	10^{-17}
 диффузия электронов <i>D</i>, см²/с 	35
• низкополевая подвижность	
электронов μ_0 , см ² /B·с	$4,24 \cdot 10^{3}$
• напряженность электрического	
поля E_p , B/см,	$3,8.10^{3}$
при которой дрейфовая скорость	
электронов v достигает своего по-	
рогового значения v _p , см/с	$1,6.10^{7}$
• дрейфовая скорость <i>v</i> электро-	
нов при ее насыщении v_s , см/с,	$1,0.10^{7}$
при напряженности электрическо-	
го поля <i>E</i> _s , В/см	$16 \cdot 10^{3}$
• относительная диэлектриче-	
ская проницаемость <i>n-GaAs</i> , ε	12,5
• длина затвора <i>L</i> , мкм	1,36
• ширина затвора <i>W</i> , мкм	1048
• толщина канала а, мкм	0,27

Поперечный разрез структуры ПТБШ с каналом *n*-*GaAs* типа показан на рис. 1, *a*.

Для ПТБШ с таким затвором, электрическое поле E на границе $x = L_1$ секций 1 и 2 достигает значения $E = E_p$, а дрейфовая скорость v электронов ее порогового значения $v = v_p$, как показано на рис. 1, δ и e. На границе x = L секций 2 и 3 электрическое поле E достигает значения $E = E_s$, а дрейфовая скорость v электронов значения ее насыщения $v = v_s$. И на последней границе $x = L + L_3$ секции 3 электрическое поле E достигает значения $E = E_m$, в то время как дрейфовая скорость v электронов по-прежнему равна значению ее насыщения $v = v_s$.

Разработку математической модели ПТБШ осуществим при следующих допущениях. Полагаем, что все физические процессы, протекающие в активной области его канала, стационарны $\partial n / \partial t = 0$. Также полагаем, что при выполнении условия L / a ≥ 5 составляющая электрического поля E_x по оси x в обедненной части активной области канала и составляющая E_y по оси *y* в ее проводящей части пренебрежимо малы и что граница между однородно легированным эпитаксиальным слоем, образующим канал, и подложкой резкая, как и граница между обедненной и проводящей частями активной области канала. Диффузией электронов пренебрегаем, приняв $D \approx 0$. Кроме того, полагаем, что центр стационарного домена, показанного на рис. 1 *a*, формирование которого вызвано накоплением электронов в секциях 2 и 3, определен границей $x = L + L_3$ секции 3.

С учетом введенных допущений двумерную дрейфово-диффузионную математическую модель ПТБШ, состоящую из уравнения непрерывности полного тока и уравнения Пуассона, можно записать в виде

$$\left. \begin{array}{l} \nabla j = 0 \\ \nabla^2 \psi = e \left(n - n_0 \right) / \varepsilon \varepsilon_0 \end{array} \right\}$$
 (1)

где ∇ – оператор Гамильтона; *j* – плотность тока

$$j = nev, \tag{2}$$

протекающего в проводящей части канала; e, n_0 и n – заряд электрона и равновесная и неравновесная концентрации; ε_0 – диэлектрическая проницаемость вакуума.

Известно, что в *n-GaAs* зависимость дрейфовой скорости от напряженности электрического поля *E* определяется функцией [7]

$$v = \frac{\mu_0 E + v_s (E / E_p)^4}{1 + (E / E_p)^4},$$
 (3)

график которой показан на рис. 2, где $E = E(x, y) = -\nabla \psi$ – напряженность электрического поля в полупроводнике; E_p и v_s – пороговое значение напряженности электрического поля E, при котором дрейфовая скорость v достигает своего порогового значения $v = v_p$, и дрейфовая скорость электронов при напряженности электрического поля $E \ge E_p$, при которой она достигает своего значения насыщения $v = v_s$, что соответствует рис. 1, δ .

К дрейфовой скорости электронов v (3) применим кусочно-линейную аппроксимацию вида

$$v = \begin{cases} \mu_0 E \operatorname{прu} E \le E_p \\ v_s \operatorname{пpu} E > E_p \end{cases},$$
(4)

как на рис. 2.

Ток стока, протекающий в секциях 1, 2 и 3 проводящей части канала, определим как

$$I_{c}(x) = en(x)v(x)b(x)W, \qquad (5)$$

где v(x) и n(x) – скорость и концентрация электронов в проводящей части канала, ко-

Рис. 1. Поперечный разрез структуры ПТБШ (*a*), напряженность электрического поля $E(\delta)$, дрейфовая скорость электронов v(s) и концентрация *n* в его канале (*г*)

торые изменяются по координате x, как показано на рис. 1, e и c; b(x) – толщина

$$b(x) = a\left(1 - \overline{y}\right) \tag{6}$$

проводящей части канала; *у* – нормированная глубина

$$\overline{y} = \left\{ \left[U(x) - U_{_{34}} + U_{_{\pi}} \right] / U_{_{0}} \right\}^{1/2}$$
(7)

обедненной части канала при плавной аппроксимации секции 1 каналом Шоккли [5]; U(x) – напряжение в проводящей части канала в зависимости от координаты *x*; $U_{_{3H}}$ – напряжение затвор-исток; $U_{_{0}} = = eN_{_{D}}a^2 / 2\varepsilon\varepsilon_0$ – напряжение отсечки.

В случае полной ионизации донорной примеси концентрацию n(x) электронов

Рис. 2. График зависимости дрейфовой скорости *v* электронов от напряженности электрического поля *E* и ее кусочно-линейная аппроксимация

в секции 1 проводящей части канала определим как

$$n(x) \approx n_{0} = N_{D} \tag{8}$$

С учетом (4), (6) и (8) падение напряжения dU(x) = Edx на элементе длиной dx секции 1 проводящей части канала определим из (5) следующим образом:

$$dU(x) = \frac{I_c(x)}{eN_{\nu}\mu_0 aW(1-\overline{y})}dx.$$
 (9)

С другой стороны, это падение напряжения может быть определено из (7) как

$$dU(x) = 2U_{\circ}\overline{y}d\overline{y}.$$
 (10)

С учетом (10) выражение (9) можно записать в виде

$$I_{c}(x)dx/(qN_{D}\mu_{0}aWU_{0}) =$$

= $2\overline{y}(1-\overline{y})d\overline{y}.$ (11)

Интегрирование правой части выражения (11) по x от 0 до L_1 и левой по \overline{y} от s до pпозволяет определить ток

$$I_{c} = eN_{D}\mu_{0}aW(U_{0}/L_{1}) \times \{p^{2} - s^{2} - (2/3)(p^{3} - s^{3})\}$$
(12)

стока на границе $x = L_1$ секций 1 и 2 проводящей части канала, где s и p – приведенные потенциалы

$$p = \overline{y} \{ U(x = L_{1}) = U_{c}' \} = \\ = \left[(U_{c}' - U_{34} + U_{\pi}) / U_{0} \right]^{1/2} \\ s = \overline{y} \{ U(x = 0) = U_{\mu}' \} = \\ = \left[(U_{\mu}' - U_{34} + U_{\pi}) / U_{0} \right]^{1/2} \}; (13)$$

 U'_{c} и U'_{μ} – напряжение на границе $x = L_{1}$ секций 1 и 2 и на границе x = 0 секции 1

проводящей части канала, как показано на рис. 1, *а*.

При аппроксимации секций 2 и 3 проводящей части канала прямоугольником их толщину можно определить как

$$b(L_1 \le x \le L + L_3) = a(1-p).$$
 (14)

Тогда с учетом (4), (8) и (14) ток стока I_c на границе $x = L_1$ секций 1 и 2 проводящей части канала может быть определен из (5) в виде

$$I_c = e N_{\scriptscriptstyle D} \mu_{\scriptscriptstyle 0} E_p a (1-p) W.$$
 (15)

Приравняв (12) и (15), найдем длину L_1 секции 1 как функцию напряжений U_{34} и U'_{c} :

$$L_{1} = \frac{U_{0}}{E_{p}} \cdot \frac{p^{2} - s^{2} - (2/3)(p^{3} - s^{3})}{1 - p}.$$
 (16)

Согласно (13) падение напряжения $U'_{c\mu}$ в секции 1 можно определить как

$$U'_{\rm CH} = U'_{\rm C} - U'_{\rm H} = U_{\rm 0} \left(p^2 - s^2 \right).$$
(17)

Выражения (12), (16) и (17) при $U_c'' = U_c'$, $L_1 = L$ и $L_2 = L_3 = 0$ позволяют рассчитать крутую область ВАХ ПТБШ, а также напряжение насыщения $U_{c \text{ нас}}'$, определяющее границу между ее крутой и пологой областями.

Для расчета пологой области ВАХ необходимо знать распределение потенциала в секциях 2 и 3 проводящей части канала с учетом накопления заряда электронов в стационарном домене у стокового конца, показанного на рис. 1, *а*.

При аппроксимации секций 2 и 3 проводящей части канала прямоугольником решение уравнения Пуассона (1) может быть записано в виде [4]

$$U(x) = U_{0}(p^{2} - s^{2}) + \sum_{m=0}^{\infty} (-1)^{m} A_{m} \operatorname{sh}[(2m+1)\pi x / 2a].$$
(18)

Для определения коэффициентов A_0 и A_1 воспользуемся граничными условиями $E = E_p$ при $x = L_1$ и $E = E_m$ при $x = L + L_3$, где E_m – максимальное значение напряженности электрического поля E в проводящей части канала, подлежащее определению.

Свяжем граничное условие $E = E_p$ при $x = L_1$ с накоплением заряда в проводящей части канала. Исходя из уравнения неразрывности (1) запишем

$$v_p N_{\scriptscriptstyle D} = v_s N_{\scriptscriptstyle D}, \qquad (19)$$

откуда

$$\overline{N}_{D} = \frac{v_{p}}{v_{s}} N_{D}, \qquad (20)$$

где $v_p = \mu_0 E_p$ – пороговое значение дрейфовой скорости v (4) электронов при напряженности электрического поля $E = E_p$; \overline{N}_p – некоторая средняя концентрация электронов в секциях 2 и 3 проводящей части канала.

Накопленный заряд в проводящей части канала определим как

$$\delta Q = W \int_{L_1}^{L+L_3} e \overline{N}_{D} \Big[\frac{v_p}{v_s} - 1 \Big] a \big(1 - p \big) dx.$$
 (21)

Интегрирование (21) дает $\delta Q = aN a(1 - p) \times a(1 - p$

$$SQ = eN_{p}a(1-p) \times$$

$$\times W(L-L_{1}+L_{3})(v_{p} / v_{s} - 1)$$
(22)

или

$$\delta Q = \varepsilon \varepsilon_{_{0}} a (1-p) W (E_{_{m}} - E_{_{p}}), \qquad (23)$$

где длину L₃ области 3 можно определить как в [6]

$$L_{3} = a(q^{2} - p^{2})^{1/2}, \qquad (24)$$

где

$$q = \overline{y} \{ U(x = L + L_{_{3}}) = U_{_{C}}'' \} = \\ = \left[(U_{_{C}}'' - U_{_{3H}} + U_{_{R}}) / U_{_{0}} \right]^{1/2}.$$
(25)

Приравняв (22) и (23), получим

$$E_m = E_p \left(1 - \alpha \right), \tag{26}$$

где α – параметр α =

$$= eN_{D} \left(L - L_{1} + L_{3} \right) / \varepsilon \varepsilon_{0} \left(v_{p} / v_{s} - 1 \right), \qquad (27)$$

характеризующий накопление заряда в секциях 2 и 3 проводящей части канала.

Теперь учитывая, что dU(x) = Edx, и применив к (18) граничные условия $E = E_p$ при $x = L_1$ и $E = E_m$ при $x = L + L_3$, получим:

$$A_{0} = \frac{2aE_{p}}{\pi} \times \left[1 + \alpha - ch \frac{3\pi}{2a} (L - L_{1} + L_{3}) \right] \times \left[ch \frac{\pi}{2a} (L - L_{1} + L_{3}) - ch \frac{3\pi}{2a} (L - L_{1} + L_{3}) \right],$$

$$A_{1} = \frac{2aE_{p}}{3\pi} \times \left[1 + \alpha - ch \frac{\pi}{2a} (L - L_{1} + L_{3}) \right] \times \left[ch \frac{\pi}{2a} (L - L_{1} + L_{3}) - ch \frac{3\pi}{2a} (L - L_{1} + L_{3}) \right].$$
(28)

Рис. 3. Вольт-амперные характеристики ПТБШ

Подставив (28) в (18), после несложных преобразований получим выражение для падения напряжения

$$U_{c\mu}'' = U_{c}'' - U_{\mu}' = U_{0}(p^{2} - s^{2}) + \frac{2aE_{p}}{3\pi} \left[(1 + \alpha) \operatorname{th} \frac{\pi}{2a} (L - L_{1} + L_{3}) + 2\operatorname{sh} \frac{\pi}{2a} (L - L_{1} + L_{3}) \right]$$
(29)

в секциях 1, 2 и 3 проводящей части канала.

Выражения (12), (16), (17) и (29) позволяют рассчитать крутую и пологую области ВАХ ПТБШ. Алгоритм расчета ВАХ должен учитывать падение напряжений $\Delta U_{\mu} =$ $= I_c R_{\mu}$ и $\Delta U_c = I_c R_c$ на сопротивлениях R_{μ} и R_c истока и стока ПТБШ. Результаты расчета ВАХ ПТБШ типа 3П602А относительно напряжений $U_3 = U''_{3\mu} - \Delta U_{\mu}$ и $U_c = U''_{c\mu} - \Delta U_c - \Delta U_{\mu}$ на его контактных площадках затвор-исток и сток-исток показаны на рис. 3, где штрихпунктиром обозначены их измеренные значения [8].

Согласно рис. З разработанная трехсекционная дрейфово-диффузионная математическая модель ПТБШ позволяет рассчитывать спадающий участок пологой области его ВАХ в режиме насыщения его тока стока I_C при $U_c > U_{c \text{ нас}}$ с погрешностью не более 3 %, тогда как известная двухсекционная модель позволяет рассчитывать его с погрешностью до 30 %.

Таким образом, разработанная трехсекционная дрейфово-диффузионная математическая модель ПТБШ позволила повысить точность расчета пологой области их ВАХ примерно в 10 раз, что важно для разработчиков как ПТБШ, так и усилительных и автогенераторных СВЧ-устройств.

Список литературы

1 Данилин В. Н., Кушниренко А. И., Петров Г. В. Аналоговые полупроводниковые интегральные схемы СВЧ. М.: Радио и связь, 1985. 192 с.

2 Муравьев В. В., Тамело А. А., Годун А. Г. Сравнительный анализ СВЧ-транзисторов на гетероструктурах // Радиоэлектроника. 1992. Т. 35, № 10. С. 27–32.

3 Piotrowich S., Gaquiere C., Bonte B. Best combination between power density, efficiency, and gain at V-band with an InP-based PHEMT structure // Microwave and guided wave letters. 1998. Vol. 8, $N_{\rm P}$ 11. P. 1365– 1372.

4 Буянов Н. Н., Пашинцев Ю. И. Математическая модель полевого транзистора на основе арсенида галлия, учитывающая накопление носителей в канале // Микроэлектроника. 1982. Т. 1, вып. 5. С. 457–460. 5 Lehovec K., Miller R. S. Field distribution in junction field-effect transistors at large drain voltages // IEEE Trans. Electron Devices. 1975. Vol. ED-22, № 5. P. 273–281.

6 Sugeta Takayukl. Microwave performance of GaAs-Schottky barreir gate FET's // Rev. Elec. Commun. Lab., 1975. Vol. 23, № 11–12. P. 1182–1192.

7 Barnes T. T., Lomax R. T. Finite-element simulation of GaAs MESFET's with lateral doping profiles and submicron gates // IEEE Trans. Electron Devices. 1976. Vol. ED-23, $N_{\rm P}$ 9. P. 1042–1048.

8 Савелькаев С. В., Плавский Л. Г. Исследование вольт-амперных характеристик полевого транзистора с барьером Шоттки // Широкополосные устройства ВЧ и СВЧ: Межвуз. сб. науч. тр. Новосибирск, 1990. С. 28–33.

Материал поступил в редколлегию 25.11.2014

S. V. Savelkaev¹, V. S. Airapetyan¹, V. A. Litovchenko^{1, 2}

¹ Siberian State University Geosystems and Technology 49 Ivanov Str., Novosibirsk, 630117, Russian Federation

² Novosibirsk Higher Military Command School 10 Plakhotnyi Str., Novosibirsk, 630108, Russian Federation

kaf.suit@ssga.ru, v.s.ayrapetyan@ssga.ru, litovchienko.vladimir@mail.ru

THREE SECTIONAL DRIFT-DIFFUSION MATHEMATICAL MODEL OF THE FIELD EFFECT TRANSISTOR WITH A SCHOTTKY BARRIER

Three sectional drift-diffusion mathematical model of the field effect transistor with a Schottky barrier is proposed. It takes into account the accumulation of charge carriers in the additionally introduced third section, which significantly improves the accuracy of the calculation of the current-voltage characteristics flat area of the transistors. This is important for developers of these transistors, as well as for amplifying and autogenerating microwave devices constructors. *Keywords*: mathematical model, Schottky barrier, the microwave device.