УДК 530.145: 519.876.5 DOI 10.25205/2541-9447-2019-14-1-5-16

Последовательности селективных операторов поворотов для создания взаимодействий для квантового отжига на трех кутритах

В. Е. Зобов¹, И. С. Пичковский²

¹ Институт физики им. Л. В. Киренского, ФИЦ КНЦ СО РАН Красноярск, Россия ² Сибирский федеральный университет Красноярск, Россия

Аннотация

Выполнено моделирование факторизации числа 15 на трех кутритах, представленных спинами *S* = 1, посредством квантового отжига. Предполагается, что сильное односпиновое взаимодействие позволяет селективно влиять на разные переходы между уровнями каждого из трех кутритов. Подобраны последовательности селективных операторов поворотов для создания из диполь-дипольного взаимодействия изменяющегося во времени эффективного гамильтониана, необходимого для решения задачи. Найдена зависимость точности от параметров магнитного поля, полного времени отжига и длительности временных шагов при замене непрерывного изменения гамильтониана на дискретное.

Ключевые слова

квантовый отжиг, факторизация, кутрит, селективные операторы поворотов

Для цитирования

Зобов В. Е., Пичковский И. С. Последовательности селективных операторов поворотов для создания взаимодействий для квантового отжига на трех кутритах // Сибирский физический журнал. 2019. Т. 14, № 1. С. 5–16. DOI 10.25205/2541-9447-2019-14-1-5-16

Sequences of Selective Rotation Operators to Engineer Interactions for Quantum Annealing on Three Qutrits

V. E. Zobov¹, I. S. Pichkovskiy²

¹Kirensky Institute of Physics, Federal Research Center KSC SB RAS Krasnoyarsk, Russian Federation ²Siberian Federal University Krasnoyarsk, Russian Federation

Abstract

We have done simulating of factorization the number 15 on three qutrits S = 1 by quantum annealing. We assume that strong one-spin interaction allow selectively operate on different transitions between levels of the each qutrit. We present a sequence of selective rotation operators to engineer from dipole-dipole interaction a time-dependent effective Hamiltonian necessary for solving the problem. Also we find dependence of fidelity versus various parameters: magnetic field, total annealing time, and duration of time step, when the continuous variation of the Hamiltonian is replaced by a discrete one.

Keywords

quantum annealing, factorization, qutrit, selective rotation operators

For citation

Zobov V. E., Pichkovskiy I. S. Sequences of Selective Rotation Operators to Engineer Interactions for Quantum Annealing on Three Qutrits. *Siberian Journal of Physics*, 2019, vol. 14, no. 1, p. 5–16. (in Russ.) DOI 10.25205/2541-9447-2019-14-1-5-16

© В. Е. Зобов, И. С. Пичковский, 2019

Введение

В настоящее время усилия многих исследователей направлены на разработку квантового компьютера [1; 2], обещающего существенное ускорение вычислений по сравнению с обычным классическим компьютером. Квантовые вычисления на нем можно осуществлять двумя способами: во-первых, с помощью сети из элементарных логических операторов [1], во-вторых, посредством медленного (адиабатического) изменения во времени гамильтониана от начального вида, основное состояние которого легко приготовить, до конечного вида, в основном состоянии которого закодировано решение задачи [3; 4]. Согласно теории оба варианта одинаково эффективны при решении сложных задач, однако считается, что адиабатические квантовые вычисления более устойчивы к помехам.

Важным для практики вариантом адиабатических квантовых вычислений служит квантовый отжиг [5; 6], при котором в качестве гамильтониана берут гамильтониан модели Изинга в поперечном магнитном поле. В начальный момент времени величина взаимодействия с полем во много раз превосходит величину спин-спинового взаимодействия, обеспечивая перемешивание всех возможных состояний последнего, т. е. готовится состояние суперпозиции всех собственных состояний этого гамильтониана. В конечный момент времени поле выключают, и спиновая система оказывается в состоянии с минимальной энергией модели Изинга, константы взаимодействия которой приготовлены в соответствии с решаемой задачей.

В качестве элементов, носителей квантовой информации, как правило, рассматривают двухуровневые квантовые системы – кубиты [1]. Выполняемые на них операции описывают в двоичной системе счисления. Те же операции можно выполнять, взяв в качестве элементов квантовые системы с тремя уровнями – кутриты [7–11]. Кутриты обещают рост эффективности квантовых вычислений, во-первых, вследствие более быстрого роста размера вычислительного базиса (гильбертова пространства) при увеличении числа элементов; во-вторых, за счет использования троичной системы счисления, которая считается более эффективной, чем двоичная [9–12].

В качестве кутритов предлагают использовать, например, объекты со спином S = 1 в магнитном и кристаллическом полях. К таковым относятся квадрупольные ядра [7; 13] дейтерия, азота или лития, а также NV-центры в алмазе (парамагнитные центры окраски, образованные электроном на вакансии возле атома азота) [14]. Последний вариант предпочтительнее по причине наличия сильного диполь-дипольного взаимодействия (ДДВ) между NV-центрами, необходимого для реализации условных операций в квантовых алгоритмах. К то-му же в этом случае наблюдается большая разница частот переходов между разными энергетическими уровнями, которая позволяет управлять состояниями системы с помощью селективных по переходам импульсов высокочастотного (ВЧ) поля.

Развитие методов управления многочастичной квантовой системой является важнейшим направлением при реализации квантового компьютера. К настоящему времени предложены варианты последовательностей селективных операторов поворотов для выполнения вентилей на отдельном кутрите [7; 8] и двух кутритах [8; 15; 16]. В работе [10] получены последовательности для сумматора в троичной системе счисления на цепочке кутритов. В работе [14] для ансамбля NV-центров в алмазе, связанных ДДВ, получены последовательности ВЧ-импульсов, селективных по переходам, позволившие устранять ДДВ или преобразовывать его в двухспиновые взаимодействия другого вида. Адиабатическое квантовое вычисление в этих работах не рассматривалось. Моделирование адиабатического квантового алгоритма факторизации на двух кудитах (*d*-уровневых квантовых системах) выполнено в работе [16]. Были найдены последовательности селективных импульсов ВЧ-поля, необходимые для создания изменяющегося во времени эффективного гамильтониана. В настоящей работе мы выполняем моделирование решения задачи факторизации посредством квантового отжига на трех кутритах. Предложены последовательности операторов поворотов, селективных по переходами и спинам, которые позволяют выключать лишние ДДВ-связи и создавать эффективное

взаимодействие нужного вида, в том числе трехспиновое взаимодействие. Отметим что, для S = 1/2 способ создания трехспинового взаимодействия был предложен в работе [17]. Этот подход, основанный на свойствах матриц Паули, неприменим для S = 1. Мы основываемся на результатах теории когерентного усреднения в ЯМР твердого тела [18], в которой импульсы ВЧ-поля устраняют ДДВ в первом порядке по малому параметру, равному отношению средних частот вращений в локальных и ВЧ-полях. Поэтому спиновая динамика определяется многоспиновыми взаимодействиями, полученными в высших порядках теории среднего гамильтониана.

Адиабатический алгоритм факторизации на трех кутритах

Задача факторизации числа n заключается в поиске чисел p и q, удовлетворяющих условию: n = pq. Для решения этой задачи посредством адиабатической эволюции во времени может быть использован простой эффективный гамильтониан [19]

$$H(t) = \left(1 - \frac{t}{T}\right) H_0 + \left(\frac{t}{T}\right) H_p, \quad 0 \le t \le T,$$
(1)

где $H_p = (n - pq)^2$, а числа *p* и *q* должны быть выражены через спиновые переменные рассматриваемой системы из трех кутритов – спинов *S* = 1. Следуя работе [19], будем выбирать сомножители среди нечетных чисел: *p* = 2*a*+1, *q* = 2*b*+1, но числа *a* и *b* будем представлять не в двоичной, а в симметричной троичной системе счисления [9; 10]: *a* = 3*a*₁ + *a*₂, *b* = *b*₀.

Для записи чисел будем использовать вычислительный базис $|m_1, m_2, m_3\rangle$ из собственных функций операторов проекций спинов на ось *Z*: S_1^z , S_2^z и S_3^z . Каждая из проекций принимает значения 1, 0, –1. В этом базисе

$$a_1 = S_1^z, \ a_2 = S_2^z, \ b = b_0 = S_3^z.$$
 (2)

Для моделирования работы алгоритма выберем n = 15. После подстановки формул получаем

$$H_{p} = (15 - (6a_{1} + 2a_{2} + 1)(2b + 1))^{2} = 144b^{2}a_{1}^{2} + 96b^{2}a_{1}a_{2} + + 16b^{2}a_{2}^{2} + 48b^{2}a_{1} + 16b^{2}a_{2} + 144ba_{1}^{2} + 96ba_{1}a_{2} + 16ba_{2}^{2} + 4b^{2} - - 312ba_{1} - 104ba_{2} + 36a_{1}^{2} + 24a_{1}a_{2} + 4a_{2}^{2} - 56b - 168a_{1} - 56a_{2} + 196,$$
(3)

где теперь входящие величины a_1 , a_2 и *b* являются операторами (2). Основному состоянию $|1,-1,1\rangle$, для которого p = 5 и q = 3 соответствует нулевое значение энергии, тогда как для других состояний энергия будет принимать большие положительные значения. В эффективном гамильтониане (3) присутствуют несуществующие взаимодействия, которые будут получены из ДДВ в следующем разделе.

В качестве начального взаимодействия возьмем взаимодействие спинов с поперечным магнитным полем, направленным вдоль оси х:

$$H_0 = -h(S_1^x + S_2^x + S_3^x),$$

а в качестве начального состояния – основное состояние этого гамильтониана $\langle \psi |$, являющееся прямым произведением собственных векторов спиновых операторов S_x отдельных спинов при положительных собственных значениях 1.

Решение нашей задачи $\langle \Psi |$ будем искать в следующем виде:

$$\left\langle \Psi \right| = \left\langle \Psi \right| \hat{Q} \exp\left(-i \int_{0}^{T} H(t) dt\right) \cong \left\langle \Psi \right| \prod_{l=0}^{N} U_{l} , \qquad (4)$$

где \hat{Q} – оператор упорядочения во времени. Следуя [16; 19; 20], оператор адиабатической эволюции за время $T = \Delta t N$ с гамильтонианом, изменяющимся по линейному закону (1), мы представили в виде произведения операторов эволюции на последовательности из N малых временных интервалов Δt . На каждом таком интервале будем пренебрегать изменением гамильтониана (1) и приближенно представлять оператор эволюции в виде произведения трех некоммутирующих операторов

$$U_{l} = \exp\left[-i\left(1 - \frac{l}{N}\right)\Delta t H_{0} / 2\right] \exp\left[-i\Delta t H_{p} \frac{l}{N}\right] \exp\left[-i\left(1 - \frac{l}{N}\right)\Delta t H_{0} / 2\right],\tag{5}$$

где l – дискретное время ($0 \le l \le N$).

Создание эффективного взаимодействия

Рассмотрим создание описанного выше эффективного взаимодействия в системе трех спинов, связанных ДДВ [21],

$$H_{d} = J_{12}S_{1}^{z}S_{2}^{z} + J_{13}S_{1}^{z}S_{3}^{z} + J_{23}S_{2}^{z}S_{3}^{z}$$
(6)

на примере NV-центров в алмазе [14]. При S = 1 гамильтониан электрона в кристаллическом и магнитном полях имеет три собственных функции с тремя собственными значениями энергии (три уровня). Разница частот переходов для NV-центров в алмазе с разной ориентацией по отношению к внешнему магнитному полю имеет порядок величины GHz, тогда как расщепление, обусловленное ДДВ – MHz. Поэтому полагаем, что различие величин резонансных частот разных переходов разных спинов превосходит величину ДДВ. С помощью импульсов СВЧ-поля с частотами, равными разнице энергий двух уровней, можно вызывать когерентные переходы между соответствующими двумя состояниями. Изменение этих двух состояний описываются операторами, совпадающими с операторами поворота двухуровневой системы (с эффективным спином S = 1/2), которые получили название селективных операторов поворота (7) [14, 16, 22] { Ω }

$$\{\Omega\}_{z,j}^{i\leftrightarrow 2} = \begin{pmatrix} \exp\left[-i\frac{\Omega}{2}\right] & 0 & 0\\ 0 & \exp\left[i\frac{\Omega}{2}\right] & 0\\ 0 & 0 & 1 \end{pmatrix}, \quad \{\Omega\}_{z,j}^{2\leftrightarrow 3} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \exp\left[-i\frac{\Omega}{2}\right] & 0\\ 0 & 0 & \exp\left[i\frac{\Omega}{2}\right] \end{pmatrix},$$
(7)
$$\{\Omega\}_{y,j}^{i\leftrightarrow 2} = \begin{pmatrix} \cos\frac{\Omega}{2} & -\sin\frac{\Omega}{2} & 0\\ \sin\frac{\Omega}{2} & \cos\frac{\Omega}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}, \quad \{\Omega\}_{y,j}^{2\leftrightarrow 3} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos\frac{\Omega}{2} & -\sin\frac{\Omega}{2}\\ 0 & \sin\frac{\Omega}{2} & \cos\frac{\Omega}{2} \end{pmatrix},$$
(7)

где Ω – угол поворота вокруг оси α ($\alpha = x, y, z$); k и n – номера уровней; j – номер спина. Матрица X-поворота отличается от Y-поворота равными (-i) коэффициентами перед обоими синусами. Для реализации селективного поворота между уровнями k и n на угол $\Omega = h_f t_p$ включают в течение конечного времени t_p ($t_p >> 1/\omega$) магнитное ВЧ-поле с амплитудой h_f (в частотных единицах) и частотой, равной разности энергий уровней $\omega = \omega_{nk} = \varepsilon_n - \varepsilon_k$ [21; 22]. Направление оси поворота задается фазой ВЧ-поля.

Наконец, действуя в течение времени t_p одновременно на два перехода двумя ВЧ-полями с частотами соответственно ω_{12} , ω_{23} и амплитудой h_f , можно произвести неселективный поворот спина [14; 22], задаваемый оператором $\exp(-i\Theta S^x)$ (или $\exp(-i\Theta S^y)$), где $\theta = t_p h_f$. С помощью таких поворотов будем получать сомножители $\exp\left[-i\left(1-\frac{l}{N}\right)\Delta tH_0/2\right]$ в операторе эволюции U_l (5).

Создание операторов с односпиновым взаимодействием в Н_р

Рассмотрим второе слагаемое $\exp(-i\Delta t H_p l/N)$ в операторе эволюции U_l (5). Подставим гамильтониан (3) в этот оператор. Разобьем его на произведение операторов эволюции каждого взаимодействия, что возможно, поскольку все слагаемые в (3) коммутируют между собой.

Сначала возьмем слагаемые $-56b - 168a_1 - 56a_2$. Соответствующие операторы могут быть получены по формуле [16]

$$\exp\left[-i\Omega S_{k}^{z}\right] = \left\{2\Omega\right\}_{z,k}^{1\leftrightarrow2} \left\{2\Omega\right\}_{z,k}^{2\leftrightarrow3},\tag{8}$$

где k – номер спина. Например:

$$\exp\left[56i\Delta t \frac{l}{N}a_{2}\right] = \left\{-112\Delta t \frac{l}{N}\right\}_{z,2}^{1\leftrightarrow2} \left\{-112\Delta t \frac{l}{N}\right\}_{z,2}^{2\leftrightarrow3}.$$

Следующими односпиновыми взаимодействиями в H_p являются операторы $36a_1^2 + 4a_2^2$. Соответствующие операторы эволюции могут быть получены по формуле [16]

$$\exp\left[-i3\varphi\left(S_{k}^{z}\right)^{2}\right] = \left\{2\varphi\right\}_{z,k}^{i\leftrightarrow2} \left\{-2\varphi\right\}_{z,k}^{2\leftrightarrow3} \exp\left[-i2\varphi I\right],\tag{9}$$

где I – единичная матрица того же ранга, что и S_z^k . Например:

$$\exp\left[-4i\Delta t \frac{l}{N}(a_2)^2\right] = \left\{\frac{8l}{3N}\Delta t\right\}_{z,2}^{l\leftrightarrow 2} \left\{-\frac{8l}{3N}\Delta t\right\}_{z,2}^{2\leftrightarrow 3} \exp\left[-\frac{8l}{3N}i\Delta t\right].$$

Создание операторов с двухспиновым взаимодействием в Н_р

Начнем с того, что в операторе эволюции из трех взаимодействий в H_d (6) оставим одно нужное и уничтожим два ненужных. Это достигается [20] с помощью оператора инверсии P_k спина k, который в нашем случае может быть реализован с помощью трех селективных импульсов [16]

9

$$P_{k}^{-1}S_{k}^{z}P_{k} = \left\{-\pi\right\}_{y,k}^{1\leftrightarrow 2}\left\{-\pi\right\}_{y,k}^{2\leftrightarrow 3}\left\{-\pi\right\}_{y,k}^{1\leftrightarrow 2}S_{k}^{z}\left\{\pi\right\}_{y,k}^{1\leftrightarrow 2}\left\{\pi\right\}_{y,k}^{2\leftrightarrow 3}\left\{\pi\right\}_{y,k}^{1\leftrightarrow 2} = -S_{k}^{z}.$$

Для получения положительного взаимодействия двух спинов следует разбить интервал эволюции пополам и на втором интервале инвертировать спин, который оставляем свободным:

$$\exp(itH_{d})P_{1}^{-1}\exp(itH_{d})P_{1} = \exp(i2tJ_{23}S_{2}^{z}S_{3}^{z}).$$
(10)

Для получения отрицательного взаимодействия двух спинов нужно инвертировать эти спины по очереди на двух интервалах:

$$P_{2}^{-1} \exp(itH_{d}) P_{2} P_{1}^{-1} \exp(itH_{d}) P_{1} = \exp(-i2tJ_{12}S_{2}^{z}S_{1}^{z}).$$
(11)

Примем для определенности следующие значение констант ДДВ:

$$J_{12} = 24$$
, $J_{13} = 312$, $J_{23} = 104$,
 $H_{2} = 24a_{2}a_{2} + 104ba_{2} + 312ba_{1}$.

Для моделирования (1)–(3) мы ввели условные безразмерные единицы измерения, которые легко могут быть выражены через константы взаимодействия реальной системы. Нужное значение показателей соответствующих сомножителей в $\exp\left[-i\Delta t H_p \frac{l}{N}\right]$ достигается из (10) и (11) заданием длины интервалов эволюции *t*. При этом полагаем, что в приготовленной системе исходные энергии (без ДДВ) всех 9 уровней ε_{ki} соизмеримы, а длина *t* выбирается кратной периодам $2\pi/\varepsilon_{ki}$ [16]. Поэтому в операторах эволюции мы опускаем соответствующие набеги фаз.

Следующими двухспиновыми взаимодействиями в H_p являются операторы $48b^2a_1 + 16b^2a_2 + 144ba_1^2 + 16ba_2^2$. Соответствующие операторы эволюции могут быть получены по формуле [16]

$$\exp\left[-3itJS_{p}^{z}\left(S_{q}^{z}\right)^{2}\right] = \exp\left[-2itJS_{p}^{z}\right]\left\{-\pi\right\}_{y,q}^{2\leftrightarrow3} \times \\ \times \exp\left[-itJS_{p}^{z}S_{q}^{z}\right]\left\{-\pi\right\}_{y,q}^{1\leftrightarrow2} \exp\left[-itJS_{p}^{z}S_{q}^{z}\right]\left\{\pi\right\}_{y,q}^{1\leftrightarrow2}\left\{\pi\right\}_{y,q}^{2\leftrightarrow3},$$
(12)

где *р* и *q* – номера спинов.

В качестве примера получим сомножитель $\exp\left[-16it\frac{l}{N}b(a_2)^2\right]$. С этой целью сначала применим формулу (12):

$$\exp\left[-16it\frac{l}{N}b(a_{2})^{2}\right] = \exp\left[-\frac{32l}{3N}itb\right]\left\{-\pi\right\}_{y,2}^{2\leftrightarrow3}\exp\left[-\frac{16l}{3N}itba_{2}\right]\times$$

$$\times\left\{-\pi\right\}_{y,2}^{1\leftrightarrow2}\exp\left[-\frac{16l}{3N}itba_{2}\right]\left\{\pi\right\}_{y,2}^{1\leftrightarrow2}\left\{\pi\right\}_{y,2}^{2\leftrightarrow3}.$$
(13)

Затем воспользуемся формулой (8) для получения первого сомножителя в (13) и формулой (10) для выделения из ДДВ взаимодействия спинов 2 и 3. В итоге находим

$$\exp\left[-16i\Delta t\frac{l}{N}b(a_2)^2\right] = \left\{\frac{64l}{3N}\Delta t\right\}_{z,3}^{1\leftrightarrow 2} \left\{\frac{64l}{3N}\Delta t\right\}_{z,3}^{2\leftrightarrow 3} \left\{-\pi\right\}_{y,2}^{2\leftrightarrow 3} \times$$

$$\times P_{1}^{-1} \exp\left[-i\frac{l}{N}\frac{\Delta t}{2}\left(\frac{2}{39}\right)H_{d}\right]P_{1} \exp\left[-i\frac{l}{N}\frac{\Delta t}{2}\left(\frac{2}{39}\right)H_{d}\right]\left\{-\pi\right\}_{y,2}^{1\leftrightarrow2} \times P_{1}^{-1} \exp\left[-i\frac{l}{N}\frac{\Delta t}{2}\left(\frac{2}{39}\right)H_{d}\right]P_{1} \exp\left[-i\frac{l}{N}\frac{\Delta t}{2}\left(\frac{2}{39}\right)H_{d}\right]\left\{\pi\right\}_{y,2}^{1\leftrightarrow2}\left\{\pi\right\}_{y,2}^{2\leftrightarrow3}$$

Другим типом двухспиновых взаимодействий в H_p являются операторы $144b^2a_1^2 + 16b^2a_2^2$. Получим сомножитель $\exp\left[-16i\Delta t \frac{l}{N}(b)^2(a_2)^2\right]$. Если применить к нему формулу (12) по второму спину, то наш оператор примет вид

$$\exp\left[-\frac{32l}{3N}i\Delta t(b)^{2}\right]\left\{-\pi\right\}_{y,2}^{2\leftrightarrow3}\exp\left[-\frac{16l}{3N}i\Delta t(b)^{2}a_{2}\right]\times\\\times\left\{-\pi\right\}_{y,2}^{1\leftrightarrow2}\exp\left[-\frac{16l}{3N}i\Delta t(b)^{2}a_{2}\right]\left\{\pi\right\}_{y,2}^{1\leftrightarrow2}\left\{\pi\right\}_{y,2}^{2\leftrightarrow3}.$$

Повторно воспользуемся формулой (12), но теперь по спину 3. Затем применим формулы (8) и (9) к односпиновым операторам:

$$\exp\left[-16i\Delta t \frac{l}{N}(b)^{2}(a_{2})^{2}\right] = \left\{\frac{64l}{9N}i\Delta t\right\}_{z,2}^{1\leftrightarrow2} \left\{-\frac{64l}{9N}i\Delta t\right\}_{z,2}^{2\leftrightarrow3} \exp\left[-\frac{64l}{9N}i\Delta t\right] \times \\ \times \left\{-\pi\right\}_{y,3}^{2\leftrightarrow3} \left\{-\frac{64l}{9N}i\Delta t\right\}_{z,3}^{1\leftrightarrow2} \left\{\frac{64l}{9N}i\Delta t\right\}_{z,3}^{2\leftrightarrow3} \left\{-\pi\right\}_{y,2}^{2\leftrightarrow3} \exp\left[-\frac{16l}{9N}i\Delta tba_{2}\right] \left\{-\pi\right\}_{y,2}^{1\leftrightarrow2} \times \\ \times \exp\left[-\frac{16l}{9N}i\Delta tba_{2}\right] \left\{\pi\right\}_{y,2}^{1\leftrightarrow2} \left\{\pi\right\}_{y,2}^{2\leftrightarrow3} \left\{-\pi\right\}_{y,3}^{1\leftrightarrow2} \left\{-\frac{64l}{9N}i\Delta t\right\}_{z,3}^{1\leftrightarrow2} \left\{\frac{64l}{9N}i\Delta t\right\}_{z,3}^{2\leftrightarrow3} \times \\ \times \left\{-\pi\right\}_{y,2}^{2\leftrightarrow3} \exp\left[-\frac{16l}{9N}i\Delta tba_{2}\right] \left\{-\pi\right\}_{y,2}^{1\leftrightarrow2} \exp\left[-\frac{16l}{9N}i\Delta tba_{2}\right] \left\{\pi\right\}_{y,2}^{2\leftrightarrow3} \left\{\pi\right\}_{y,3}^{1\leftrightarrow2} \left\{\pi\right\}_{y,3}^{2\leftrightarrow3} \left\{\pi\right\}_{y,3}^{1\leftrightarrow2} \left\{\pi\right\}_{y,3}^{2\leftrightarrow3} \left\{\pi\right\}_{y,3}^{2,3} \left\{\pi\right$$

Для получения из (14) окончательного выражения используем формулу (10) для выделения из ДДВ взаимодействия спинов 2 и 3 аналогично предыдущему случаю.

Создание операторов с трехспиновым взаимодействием в Н_р

В *H_p* входят два слагаемых с трехспиновым взаимодействием 96*b*²*a*₁*a*₂ + 96*ba*₁*a*₂. Для создания в (5) оператора эволюции с трехспиновым взаимодействием из ДДВ (6) будем следовать идеям теории когерентного усреднения [18] и воспользуемся формулой Троттэр – Сузу-ки [23]:

$$\exp\left[ib_{12}S_1^xS_2^z\right]\exp\left[ib_{13}S_1^zS_3^z\right]\exp\left[-ib_{12}S_1^xS_2^z\right]\exp\left[-ib_{13}S_1^zS_3^z\right]\approx\exp\left[ib_{12}b_{13}S_1^yS_2^zS_3^z\right],$$
(15)

где $b_{ij} = \Delta t J_{ij} \ll 1$. В формуле (15) сохранены члены второго порядка малости и отброшены члены третьего порядка малости. Входящие в (15) сомножители с $\pm S_1^x S_2^z$ в показателе экспоненты получим из ДДВ с помощью неселективных поворотов первого спина на угол $\pm \pi/2$ вокруг оси *Y*. Наконец, выполнив в выражении (15) поворот первого спина на угол $\pi/2$ вокруг оси *X*, находим

$$\exp\left[ib_{12}b_{13}S_1^zS_2^zS_3^z\right] \approx \exp\left[-i\frac{\pi}{2}S_1^x\right] \exp\left[-i\frac{\pi}{2}S_1^y\right] \exp\left[ib_{12}S_1^zS_2^z\right] \exp\left[i\frac{\pi}{2}S_1^y\right] \times \left[i\frac{\pi}{2}S_1^y\right] \exp\left[-i\frac{\pi}{2}S_1^y\right] + \left[i\frac{\pi}{2}S_1^y\right] \exp\left[i\frac{\pi}{2}S_1^y\right] \exp\left[i\frac{\pi}{2}S_1^y\right] + \left[i\frac{\pi}{2}S_1^y\right] + \left[i\frac{\pi}{2}S$$

$$\times \exp\left[ib_{13}S_{1}^{z}S_{3}^{z}\right] \exp\left[-i\frac{\pi}{2}S_{1}^{y}\right] \exp\left[-ib_{12}S_{1}^{z}S_{2}^{z}\right] \exp\left[i\frac{\pi}{2}S_{1}^{y}\right] \times \exp\left[-ib_{13}S_{1}^{z}S_{3}^{z}\right] \exp\left[i\frac{\pi}{2}S_{1}^{x}\right]$$
(16)

На основании формулы (16) получаем

$$\exp\left[-96i\Delta t\frac{l}{N}ba_{1}a_{2}\right] = \exp\left[i\frac{\pi}{2}S_{1}^{x}\right]\exp\left[i\frac{\pi}{2}S_{1}^{y}\right]\exp\left[-i\sqrt{96\frac{l}{N}\Delta t}a_{1}a_{2}\right]\exp\left[-i\frac{\pi}{2}S_{1}^{y}\right]\times$$

$$\times \exp\left[-i\sqrt{96\frac{l}{N}\Delta t}a_{1}b\right]\exp\left[i\frac{\pi}{2}S_{1}^{y}\right]\exp\left[-i\sqrt{96\frac{l}{N}\Delta t}a_{1}a_{2}\right]\times$$

$$\times \exp\left[-i\frac{\pi}{2}S_{1}^{y}\right]\exp\left[i\sqrt{96\frac{l}{N}\Delta t}a_{1}b\right]\exp\left[-i\frac{\pi}{2}S_{1}^{x}\right].$$
(17)

Для получения окончательного выражения из (17) используем формулу (10) или (11) (в зависимости от знака) для выделения из ДДВ (6) взаимодействия выделенной пары спинов. Нужную величину коэффициента перед операторами a_1a_2 и a_1b в показателях экспонент получаем с помощью выбора длины интервалов эволюции.

Для создания оператора эволюции $\exp\left[-96i\Delta t \frac{l}{N}(b)^2 a_1 a_2\right]$ сначала применяем формулу (12)

$$\exp\left[-96i\Delta t \frac{l}{N}(b)^{2} a_{1}a_{2}\right] = \exp\left[-64i\Delta t \frac{l}{N}a_{1}a_{2}\right] \left\{-\pi\right\}_{y,3}^{2\leftrightarrow3} \exp\left[-32i\Delta t \frac{l}{N}ba_{1}a_{2}\right] \times \left\{-\pi\right\}_{y,3}^{1\leftrightarrow2} \exp\left[-32i\Delta t \frac{l}{N}ba_{1}a_{2}\right] \left\{\pi\right\}_{y,3}^{1\leftrightarrow2} \left\{\pi\right\}_{y,3}^{2\leftrightarrow3}.$$

В дальнейшем поступаем аналогично предыдущему случаю.

Наконец, отметим, что для уменьшения ошибки получения трехспинового взаимодействия при моделировании отжига мы будем разбивать временной интервал дополнительно на семь частей:

$$\exp[-itJ_{123}ba_{1}a_{2}] = \left\{\exp[-i(t/7)J_{123}ba_{1}a_{2}]\right\}^{7}$$

Расчет и обсуждение

По описанным в предыдущем разделе правилам была найдена полная последовательность селективных операторов поворотов и интервалов эволюции с гамильтонианом ДДВ, необходимая для моделирования факторизации числа 15 посредством квантового отжига. Результат вычисления получается в виде суперпозиции 27 состояний вычислительного базиса

$$\langle \Psi | = \sum_{m_1, m_2, m_3} C_{m_1, m_2, m_3} \langle m_1, m_2, m_3 |.$$

Точным решением нашей задачи является состояние $\langle 1, -1, 1 |$, поэтому достигнутую точность нашего вычисления будем характеризовать величиной

$$R = |\langle \Psi | 1, -1, 1 \rangle|^2 = |C_{1, -1, 1}|^2,$$

равной вероятности получения точного состояния из суперпозиционного. Результаты, полученные при разных значениях параметров, приведены на рисунке.

Зависимость точности факторизации от времени выполнения алгоритма $T = \Delta t N(a)$, от величины магнитного поля (δ) и от длительности шага дискретного времени (s) при разных значениях других параметров

На рисунке (*a*) показаны зависимости точности *R* от времени выполнения алгоритма $T = \Delta t N$. Для сравнения крестами показаны результаты расчета при замене симметричного представления (5) на несимметричное:

$$U_{l} = \exp\left[-i\left(1 - \frac{l}{N}\right)\Delta tH_{0}\right] \exp\left[-i\Delta tH_{p}\frac{l}{N}\right].$$

Отличия небольшие, поскольку большой вклад в ошибку образуется при получении трехспинового взаимодействия. Видно, что при малых Δt и больших N мы достигаем точного решения, что свидетельствует, с одной стороны, о правильности найденной последовательности операторов, а с другой – о выполнении условия адиабатичности. Если взять большее значение Δt , то при увеличении T посредством увеличения N рост точности R останавливается на некотором предельном остаточном значении, обусловленном ошибкой при замене непрерывного изменения гамильтониана на дискретное (4), (5) и применении формул Троттер – Сузуки. Это остаточное значение зависит от величины поля *h*, как это показано на рисунке (δ). При малых значениях поля наблюдается рост точности при увеличении поля. Скорость такого роста возрастает при увеличении Δt , поскольку в дискретном представлении (5) действие поля сводится к повороту на угол Δth . Если при увеличении Δt и *h* угол возрастает до $\pi/2$, то точность падает. Наконец, на рисунке (ϵ) показано изменение точности при изменении Δt . Кривые зависимостей имеют максимумы. Спад точности при малых Δt обусловлен нарушением адиабатичности. Спад точности при больших Δt происходит вследствие замены непрерывного изменения гамильтониана на дискретное.

На основе численного моделирования можно подбирать оптимальные параметры для экспериментальной реализации алгоритма. Согласно рисунку (*a*) при N = 10, $\Delta t = 0,01$ и h = 100точность полученного результата R = 0,39. Точность можно увеличить до R = 0,48, если взять $\Delta t = 0,0087$ и h = 160.

Таким образом, в настоящей работе предложены последовательности селективных операторов поворота для создания в системе из трех спинов S = 1 одно-, двух- и трехспиновых взаимодействий разного вида. Возможности управления системой трех кутритов продемонстрированы на примере факторизации числа 15 в троичной системе счисления посредством квантового отжига. Полученные формулы могут быть применены при реализации других квантовых алгоритмов на кутритах.

Список литературы / References

1. Валиев К. А., Кокин А. А. Квантовые компьютеры: надежды и реальность. Ижевск, 2001. 352 с.

Valiev K. A., Kokin A. A. Kvantovye komp'yutery: nadezhdy i real'nost'. Izhevsk, 2001, 352 p. (in Russ.)

- 2. Preskill J. Quantum Computing in the NISQ era and beyond. In: arXiv:1801.00862.
- Farhi E., Goldstone J., Gutmann S. et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. *Science*, 2001, vol. 292, no. 5516, p. 472–472.
- 4. Albash T., Lidar D. A. Adiabatic quantum computation. *Rev. Mod. Phys.*, 2018, vol. 90, no. 1, p. 015002 (1–64).
- 5. Brooke J., Bitko D., Rosenbaum T. F. Quantum Annealing of a Disordered Magnet. *Science*, 1999, vol. 284, no. 5415, p. 779–881.
- 6. Cohen E., Tamir B. Quantum annealing foundations and frontiers. *Eur. Phys. J. Special Topics*, 2015, vol. 224, p. 89–110.
- 7. Das R., Mitra A., Kumar V., Kumar A. Quantum Information processing by NMR: Preparation of pseudopure states and implementation of unitary operations in a single-qutrit system. *Int. J. Quantum Inf.*, 2003, vol. 1, p. 387–394.
- 8. Klimov A. B., Guzmán R., Retamal J. C., Saavedra C. Qutrit quantum computer with trapped ions. *Phys. Rev. A*, 2003, vol. 67, no. 6, p. 062313 (1–7).
- 9. **Tamir B.** Quantum query complexity for qutrits. *Phys. Rev. A*, 2008, vol. 77, no. 2, p. 022326 (1–7).
- Зобов В. Е., Пехтерев Д. И. Сумматор на троичных базовых элементах для квантового компьютера // Письма в ЖЭТФ. 2009. Т. 89, вып. 5. С. 303–307.
 Zobov V. E., Pekhterev D. I. Adder on Ternary Base Elements for a Quantum Computer.

JETP Letters, 2009, vol. 89, no. 5, p. 260–263.

11. Bocharov A., Roetteler M., Svore K. M. Factoring with qutrits: Shor's algorithm on ternary and metaplectic quantum architectures. Phys. Rev. A, 2017, vol. 96, no. 1, p. 012306 (1–17).

- Cooley J. W., Tukey J. W. An Algoritm for the machine Computation of Complex Fourier Series. *Math. Comp.*, 1965, vol. 19, p. 297–301.
- Зобов В. Е., Шауро В. П. Об оптимальном по времени управлении методом ЯМР состояниями кутритов, представленных квадрупольными ядрами со спином *I* = 1 // ЖЭТФ. 2011. Т. 140, вып. 2. С. 211–223.

Zobov V. E., Shauro V. P. On the time-optimal NMR control of states of qutrits represented by quadropole nuclei with spin I = 1. *JETP*, 2011, vol. 113, no. 2, p. 181–191.

- 14. Choi S, Yao N. Y., Lukin M. D. Dynamical Engineering of Interaction in Qudit Ensembles. *Phys. Rev. Lett.*, 2017, vol. 119, no. 18, p. 183603.
- 15. Шауро В. П., Пехтерев Д. И., Зобов В. Е. Сравнительный анализ двух способов реализации элементарных логических операторов для квантового компьютера на кутритах // Изв. вузов. Физика. 2007. № 6. С. 41–47.

Shauro V. P., Pekhterev D. I., Zobov V. E. Comparative analysis of two methods of realizing elementary logic operators for a quantum computer on qutrites. *Izv. Vyssh. Ushebn. Zaved., Ser. Fiz.*, 2007, no. 6, p. 41–47. (in Russ.)

- Зобов В. Е., Ермилов А. С. О выполнении квантового адиабатического алгоритма факторизации на двух кудитах // ЖЭТФ. 2012. Т. 141, вып. 6. С. 1060–1070.
 Zobov V. E., Ermilov A. S. Implementation of Quantum Adiabatic Alghorithm for Factoriza-
- 17. Tseng M., Somaroo S., Sharf Y., Knill E., Laflamme R., Havel T. F., Cory D. G. Quantum simulation of a three-body-interaction Hamiltonian on an NMR quantum computer. *Phys. Rev. A*, 1999, vol. 61, no. 1, p. 012302 (1–6).
- 18. Haeberlen U., Waugh J. S. Coherent Averaging Effects in Magnetic Resonance. *Phys. Rev.*, 1968, vol. 175, no. 2, p. 453–467.
- 19. Peng X., Liao Z., Xu N. et al. A Quantum Adiabatic Algorithm for Factorization and Its Experimental Implementation. *Phys. Rev. Lett.*, 2008, vol. 101, no. 22, p. 220405 (1–4).
- Steffen M., van Dam W., Hogg T., Breyta G., Chuang I. Experimental Implementation of an Adiabatic Quantum Optimization Algorithm. *Phys. Rev. Lett.*, 2003, vol. 90, no. 6, p. 067903 (1–4).
- Сликтер Ч. Основы теории магнитного резонанса. М.: Мир, 1981. 448 с. Slikter Ch. Principles of magnetic resonance. Berlin, 1978.

tion on Two Qudits. JETP, 2012, vol. 114, no. 6, p. 923-932.

- 22. Mehring M., Wolff E. K., Stoll M. E. Exploration of the Eight-Dimensional Spin Space of a Spin-1 Particle by NMR. J. Magn. Reson., 1980, vol. 37, p. 475–495.
- 23. Hatano N., Suzuki M. Finding exponential product formulas of higher orders. In: Das A., Chakrabarti B. K. (eds.). Quantum annealing and other optimization methods. Berlin, Springer, 2005, p. 37–68. arXiv: math-ph/0506007.

Материал поступил в редколлегию Received 27.04.2018

Сведения об авторах / Information about the Authors

Зобов Владимир Евгеньевич, доктор физ.-мат. наук, старший научный сотрудник, главный научный сотрудник, Институт физики им. Л. В. Киренского СО РАН (Академгородок, 50, стр. 38, Красноярск, 660036, Россия)

Vladimir E. Zobov, Doctor Phys.-Mat. Sciences, Senior Researcher, Chief Researcher, Kirensky Institute of Physics SB RAS (50, bld. 38, Akademgorodok, Krasnoyarsk, 660036, Russian Federation)

rsa@iph.krasn.ru

- **Пичковский Иван Сергеевич**, бакалавр, Сибирский федеральный университет (ул. Киренского, 28, Красноярск, 660074, Россия)
- Ivan S. Pichkovskiy, bachelor, Siberian Federal University (28 Kirensky Str., Krasnoyarsk, 660074, Russian Federation)

rsa@iph.krasn.ru