- Математические труды
- Архив
- 2024
- № 3
- Выпуск №3
Устойчивость решений линейных систем дифференциальных уравнений динамики популяций с переменным запаздыванием
Исследована задача устойчивости тривиального положения равновесия некоторых компартментных и стадия-зависимых моделей динамики популяций, построенных на основе линейных дифференциальных уравнений с переменным запаздыванием. Получены достаточные условия асимптотической устойчивости тривиального положения равновесия изучаемых систем дифференциальных уравнений на основе метода монотонных операторов и свойств М-матриц. Рассмотрена линейная модель динамики ВИЧ-1 инфекции в организме инфицированного человека. Установлены достаточные условия асимптотической устойчивости тривиального решения модели динамики ВИЧ-1 инфекции. Найденные соотношения для параметров модели интерпретируются как условия искоренения ВИЧ-1 инфекции за счет неспецифических факторов иммунной системы.
УДК 517.929:57
Ключевые слова: линейные дифференциальные уравнения с переменными запаздыванием, асимптотическая устойчивость, невырожденная М-матрица, динамика ВИЧ-1 инфекции.